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Abstract

One popular method for nonparametric spectral density estimation is to perform kernel smoothing on the periodo-
gram, and one important component of this method is the choice of the bandwidth (or span) for smoothing. This paper
proposes a new bandwidth selection method that is based on a coupling of the so-called plug-in and the unbiased risk
estimation ideas. This new method is easy to describe, simple to implement, and does not impose severe conditions on the
unknown spectrum. Numerical results suggest that this new method often outperforms some other commonly used
bandwidth selection methods. The new methodology is also applied to choose the bandwidth for log-periodogram
smoothing. ( 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper considers the problem of estimating
the spectral density by nonparametrically smooth-
ing the periodogram or the log-periodogram.
Many approaches have been proposed. These
include spline smoothing (e.g. [10,20]), kernel
smoothing (or weighted local averaging) (e.g.
[3,11,15,19]) and wavelet techniques (e.g.
[4,13,21]). The approach that this paper is con-
cerned with is kernel smoothing. Some appealing
features of this approach are that it is simple to use,
easy to understand and straightforward to
interpret.

One important component of the kernel smooth-
ing approach is the choice of the bandwidth (or
span) for smoothing. The goal of this paper is to
introduce a simple but e!ective technique for
choosing the bandwidth. This technique is based on
a coupling of the plug-in and the unbiased risk
estimation ideas that are commonly found in the
nonparametric probability density and regression
estimation literature. This technique is termed
PURE [12]. Our simulation results show that this
PURE choice of bandwidth is superior to cross-
validation and the method proposed in [11].

The rest of this paper is organized as follows.
Section 2 provides some background material on
the periodogram and the unbiased risk estimation
technique. In Section 3 the new PURE choice of
bandwidth for smoothing the periodogram is intro-
duced, while Section 4 considers the smoothing of
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the log-periodogram. Simulation results are re-
ported in Section 5 and this paper ends with a con-
cluding section.

2. Background

2.1. Periodogram smoothing

Suppose that Mx
t
N is a real-valued, zero mean

stationary process with unknown spectral density f,
and that a "nite-sized realization x

0
,2, x

2n~1
of

Mx
t
N is observed. The goal is to estimate f by using

those observed x
t
's. The periodogram is de"ned as

I(u)"
1

2p]2n K
2n~1
+
t/0

x
t
exp(!iut)K

2
,

i"J!1, u3[0, 2p).

To simplify notation, write u
j
"2pj/(2n). Since

the spectral density f is symmetric about u"p,
we shall focus our discussion on f (u

j
) for

j"0,2, n!1. Also, as f is periodic with period 2p,
we have f (u

~j
)"f (u

j
) and I(u

~j
)"I(u

j
) for

j"1,2, n!1.
A frequently adopted model for I(u

j
) is (e.g. see

[3,11,13,14])

I(u
j
)"f (u

j
)e
j
, j"0,2, n!1, (1)

where the e
j
's are independent standard exponen-

tial random variables. Thus EMI(u
j
)N"f (u

j
) and

VarMI(u
j
)N"f (u

j
)2. Due to its unacceptably large

variance, I(u
j
) is seldom used as an estimate of

f (u
j
).

One possible way for obtaining better estimates
for f (u

j
) is to smooth the I(u

j
)'s. Here we consider

the following kernel estimator for f (u
j
):

fK
h
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),

j"0,2, n!1. (2)

In the above K
h
( ) )"(1/h)K( ) /h), where the kernel

function K is (usually taken as) a symmetric prob-
ability density function and the bandwidth h is
a nonnegative smoothing parameter that controls
the amount of smoothing. It is well known that the

choice of h is much more crucial than the choice of
K (e.g. see [16] or [23]). Also, in most other kernel
smoothing problems the limits of the two summa-
tions in (2) are 0 and n!1. However, since in the
present setting boundary e!ects can be handled by
periodic smoothing, the limits are changed from
0 and n!1 to !n and 2n!1, respectively.

The estimator fK
h
(u

j
) can also be interpreted as

a weighted average of the I(u
j
)'s. It is because one

could write

fK
h
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h,k

(j)I(u
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)

with =
h,k

(j)"
K
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l
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j
)
. (3)

Notice that the weights=
h,k

( j)'s sum to unity.

2.2. Unbiased risk estimation

As mentioned before, the choice of h is crucial.
One such reasonable choice is to choose it as the
minimizer of the risk function R(h):

R(h)"EC
n~1
+
j/0

Mf (u
j
)!fK

h
(u

j
)N2D.

Of course, in practice, this idealized choice of h can-
not be obtained, as we do not know f (u

j
) and hence

R(h). In [11] an unbiased estimator RK
SURE

(h) of R(h)
is constructed using the so-called Stein's unbiased
risk estimation (SURE) technique (e.g. see [17,18]).
For the current formulation

RK
SURE

(h)"
n~1
+
j/0

MI(u
j
)!fK

h
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j
)N2

!

1!2=
h,0

(0)

2

n~1
+
j/0

I(u
j
)2.

It is also suggested in [11] that h could be chosen as
the minimizer of RK

SURE
(h). Good practical perfor-

mances of this unbiased risk estimation approach
for choosing h have been reported in [11,19].

However, in the nonparametric probability den-
sity (e.g. [2]) and regression estimation contexts
(e.g. [1,7]), it has been shown that the variances of
the risk estimators obtained by the SURE ap-
proach can sometimes be high. As a consequence,
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poor-quality bandwidths can sometimes be chosen.
This phenomenon is expected to carry over to the
context of spectral density estimation, and thus
there is the need for seeking better (or more stable)
estimates for R(h); see the next section.

For comparative purposes, we also write down
the following criterion derived using the method
cross-validation:
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(e.g. see [9,11] and references given therein). In the
above fK

h
(u

~j
) is the usual `leave-one-outa estimate

of f
h
(u

j
). It is straightforward to show that, as an

estimator of R(h), RK
CV

(h) is biased (but the bias goes
away when nPR).

3. Stabilized risk estimation

This section presents the main contribution
of this paper, namely, a new estimator for R(h).
This new estimator is relatively more stable than
RK

SURE
(h).

3.1. Derivation of the new risk estimator

First, we begin with E[Mf (u
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dom variable X, we have
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and hence
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Therefore, if f is known, R(h) for a given h can be
estimated by

n~1
+
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)N2#
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Certainly the above expression is of no practical
use, as we do not know f. One way to construct an
estimator of R(h) using this expression is "rst to
obtain a pilot estimate fK

hP
(with a pilot bandwidth

h
P
; see below) and then plug-in this pilot estimate

into (4):

RK
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Here we propose to choose h as the minimizer of
RK

PURE
(h). Notice that RK

PURE
(h) is constructed by using

both the plug-in and the unbiased risk estimation
ideas, and hence the name PURE. Also notice that
no `higher-ordera quantities like f A are required in
using RK

PURE
(h).

3.2. Some remarks

By comparing the expressions for RK
SURE

(h) and
RK

PURE
(h), perhaps one can gain some insights about

why RK
PURE

(h) is a more stable estimator. In the
expression for RK

PURE
(h), those high-variance I(u

j
)'s

are, in a way, replaced by the pilot estimates fK
hP

(u
j
).

These pilot estimates are themselves smoothed
versions of I(u

j
)'s, and hence should have lower

variances. In other words, the "rst step of
`pre-smoothinga the I(u

j
)'s introduces a stabilizing

e!ect to the estimation, but perhaps at a small

T.C.M. Lee / Signal Processing 81 (2001) 419}430 421



expense of increasing the bias. This is because
fK
hP

(u
j
) is generally a slightly biased estimator of

f (u
j
) and this would make RK

PURE
(h) biased for R(h);

see (4) and (5).
There are two additional attractive features of

the proposed PURE bandwidth selection proced-
ure: it is easy to describe and simple to implement.
It only requires the selections of two bandwidths,
and these selections can be easily performed via
solving two simple minimization problems. Also,
this PURE idea to risk estimation has been, some-
times under di!erent names, applied with great
success to tackle di!erent nonparametric probabil-
ity density and regression estimation problems
[12]. Those di!erent names that have been used
include stabilized selectors [1,2], smoothed cross-
validation [6], double smoothing [8] and exact risk
approach [22].

Now for the choice of the pilot bandwidth h
P
. In

other similar problems it has been shown that the
choice for the pilot bandwidth is not a crucial issue
(e.g., see the references cited in the previous para-
graph). Therefore, for simplicity, we suggest choos-
ing h

P
as the minimizer of RK

SURE
(h). This simple

choice for h
P

performed very well in our simula-
tions.

As a summary, our PURE-based spectral density
estimate fK

hF
can be obtained by the following

steps:

1. choose the pilot bandwidth h
P

as the minimizer
of RK

SURE
(h),

2. use (3) to compute fK
hP

(u
j
), j"1,2, n!1, with

h
P

as the bandwidth,
3. substitute the computed fK

hP
(u

j
)'s into expression

(5) for RK
PURE

(h),
4. choose the xnal bandwidth h

F
as the minimizer

of RK
PURE

(h),
5. use (3) to compute the "nal spectral density

estimate fK
hF

(u
j
), j"1,2, n!1, with h

F
as the

bandwidth.

4. Log-periodogram smoothing

The PURE methodology can also be applied to
choose the bandwidth for log-periodogram

smoothing. In this case the natural risk function
that one would like to minimize is

R@(h)"EC
n~1
+
j/0

Mlog f (u
j
)!log fK

h
(u

j
)N2D.

The "rst step is to transform the multiplicative
model (1) into an additive model by taking a logar-
ithmic transform:
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where the m
j
's are independent zero mean random

variables with variance p2/6 and c"0.57721 is the
Euler's constant.
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) be the kernel es-

timate of log f (u
j
). Using the same technique as

before, one can show that
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is a PURE-based estimator of R@(h). In the above
h

P
is a pilot bandwidth, which we recommend

choosing as the minimizer of the SURE-based es-
timator of R@(h) proposed by [11]:

RK @
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6
M1!2=
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For completeness we also list the following
cross-validation criterion for log-periodogram
smoothing:

RK @
CV

(h)"
n~1
+
j/0

My(u
j
)!g(

h
(u

j
)N2/M1!=

h,0
(0)N2.

5. Simulation

This section reports the results of two simulation
experiments that we have conducted.
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Table 1
Average values of various risk-ratio di!erences for the periodogram smoothing experiment. Numbers in
parenthesis are estimated standard errors

Example n rSURE!rPURE rCV!rPURE rCV!rSURE

1 256 2.923 (0.631)! 3.08 (0.776)! 0.157 (0.946)
2 256 0.028 (0.025) 0.306 (0.08)! 0.278 (0.075)!
3 256 2.445 (0.789)! 2.180 (1.087)! !0.264 (1.696)
4 256 0.165 (0.045)! 0.526 (0.129)! 0.361 (0.121)!

1 512 2.385 (0.875)! 3.031 (1.345)! 0.646 (1.971)
2 512 0.086 (0.03)! 0.368 (0.072)! 0.282 (0.059)!
3 512 1.001 (0.207)! 2.159 (0.569)! 1.158 (0.633)
4 512 0.205 (0.044)! 0.774 (0.216)! 0.568 (0.204)!

1 1024 2.060 (0.459)! 4.148 (1.328)! 2.088 (1.308)
2 1024 0.229 (0.052)! 0.273 (0.099)! 0.044 (0.109)
3 1024 1.779 (0.601)! 1.476 (0.597)! !0.303 (0.982)
4 1024 0.178 (0.034)! 0.476 (0.137)! 0.298 (0.139)!

!Indicate that the di!erence is signi"cant at 5% level.

5.1. Periodogram smoothing

The "rst experiment was concerned with the
smoothing of the periodogram. Four test examples
and three di!erent sample sizes were used. The three
sample sizes were n"256, 512 and 1024, and the
four test examples were from the ARMA(a,b) model

x
t
#a

1
x
t~1

#2#aaxt~a
"q

t
#b

1
q
t~1

#2#bbqt~b , q
t
&N(0,1)

with parameters given by

Example 1. AR(3) with a
1
"!1.5, a

2
"0.7 and

a
3
"!0.1.

Example 2. AR(3) with a
1
"0.9, a

2
"0.8 and

a
3
"0.6.

Example 3. MA(3) with b
1
"0.9, b

2
"0.8 and

b
3
"0.6.

Example 4. MA(4) with b
1
"!0.3, b

2
"!0.6,

b
3
"!0.3 and b

4
"0.6.

These testing examples have previously been used
by many authors; e.g., see [3,9,11,14,20]. The kernel
function used was K(x)"3

4
(1!x2), x3[0,1]. It is

the optimal kernel of order (0,2) derived in [5]. It

is also known as the Epanechnikov kernel, and
it is optimal in the sense that it minimizes the risk
R(h) for a given h as nPR.

For each combination of test example and
sample size (totally there are 4]3"12 such com-
binations), 500 independent series were simulated,
and the corresponding periodograms were also
computed. For each of these generated periodo-
grams the following four bandwidths were ob-
tained:
h

OPT
: the optimal bandwidth that minimizes R(h) (in

practice h
OPT

is unobtainable);
h

PURE
: the bandwidth chosen by the PURE proced-

ure (i.e., minimizer of RK
PURE

(h));
h

SURE
: the bandwidth chosen by the SURE proced-

ure (i.e., minimizer of RK
SURE

(h));
h

CV
: the bandwidth chosen by cross-validation (i.e.,

minimizer of RK
CV

(h));
In addition, three risk ratios were computed:

r
PURE

"R(h
PURE

)/R(h
OPT

), r
SURE

"R(h
SURE

)/R(h
OPT

) and
r

CV
"R(h

CV
)/R(h

OPT
). These risk ratios are used for

comparing the relative merits of the bandwidth
selection methods: the smaller the risk ratio, the
better the method.

The average values of the risk-ratio di!erences
r

SURE
!r

PURE
, r

CV
!r

PURE
and r

CV
!r

SURE
are listed in

Table 1. Paired t-tests were conducted to test
if the di!erences are statistically signi"cant at 5%

T.C.M. Lee / Signal Processing 81 (2001) 419}430 423



Fig. 1. Boxplots of the three risk-ratio di!erences rSURE!rPURE , rCV!rPURE and rCV!rSURE for the periodogram smoothing experiment.

signi"cance level. In addition, boxplots of these
three risk-ratio di!erences are given in Fig. 1,
while plots of di!erent spectrum estimates are
provided in Figs. 2}5 for the purpose of visually
evaluating the di!erent bandwidth selection
methods.

From Table 1 and Figs. 1}5 one can see that the
PURE method outperformed the other two
methods in all cases except for Example 2 with
n"256, where PURE and SURE gave similar per-
formance. Also, in most cases the PURE spectrum
estimates contain less wiggles than others. Another
observation is that SURE is slightly superior
to CV.

5.2. Log-periodogram smoothing

In order to compare the relative merits of the
PURE, SURE and cross-validation bandwidth
selection methods described in Section 4 for
log-periodogram smoothing, a similar numerical
experiment was performed. The set-up was essen-
tially the same as in the previous section, but the
target risk function was R@(h), and the risk ratios are
de"ned in terms of R@(h). Results are reported, in the
same format as before, in Table 2 and Figs. 6}10.
From these results, one can see that PURE also,
but to a lesser extent, outperforms SURE in the
context of log-periodogram smoothing.
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Fig. 2. Smoothing of periodogram, Example 1 with n"512: plots of the (a) spectrum and twenty estimates obtained by the (b) PURE,
(c) SURE, and the (d) CV methods.

Fig. 3. Similar to Fig. 2 but for Example 2.
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Fig. 4. Similar to Fig. 2 but for Example 3.

Fig. 5. Similar to Fig. 2 but for Example 4.
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Table 2
Similar to Table 1 but for log-periodogram smoothing

Example n rSURE!rPURE rCV!rPURE rCV!rSURE

1 256 0.107 (0.034)! !0.042 (0.069) !0.149 (0.089)
2 256 0.018 (0.014) !0.011 (0.022) !0.028 (0.022)
3 256 0.048 (0.019)! 0.020 (0.044) !0.028 (0.047)
4 256 0.020 (0.019) !0.050 (0.029) !0.070 (0.038)

1 512 0.070 (0.021)! 0.048 (0.047) !0.022 (0.052)
2 512 0.008 (0.013) 0.024 (0.026) 0.015 (0.023)
3 512 0.004 (0.014) 0.002 (0.023) !0.002 (0.024)
4 512 0.045 (0.016)! 0.008 (0.033) !0.038 (0.04)

1 1024 0.053 (0.017)! 0.081 (0.025)! 0.028 (0.023)
2 1024 0.002 (0.011) 0.009 (0.015) 0.006 (0.011)
3 1024 0.007 (0.013) 0.001 (0.018) !0.007 (0.017)
4 1024 0.011 (0.014) !0.023 (0.018) !0.034 (0.02)

!Indicate that the di!erence is signi"cant at 5% level.

Fig. 6. Similar to Fig. 1 but for log-periodogram smoothing.
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Fig. 7. Similar to Fig. 2 but for log-periodogram smoothing.

Fig. 8. Similar to Fig. 3 but for log-periodogram smoothing.
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Fig. 9. Similar to Fig. 4 but for log-periodogram smoothing.

Fig. 10. Similar to Fig. 5 but for log-periodogram smoothing.
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6. Concluding remarks

In this paper a new bandwidth selection meth-
odology for periodogram and log-periodogram
kernel smoothing is proposed. The proposed
methodology is based on a combining of both
the `plug-ina and the unbiased risk estimation
techniques. The new methodology is easy to
describe, simple to implement, and its good perfor-
mance has been demonstrated by simulation. It
is also anticipated that the performance can be
further improved, at an expense of increasing
computational time, by using the `kernel-
selectiona technique proposed in [19].
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