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Exact logistic regression: an extension of

Barnard’s approach for continuous

covariates. ∗

W. Dana Flanders†and Chiranjeev Dash‡

Abstract

Logistic regression is commonly used to analyze observational studies when the

outcome (dependent variable) is dichotomous. For studies with a large sample size or

relatively few parameters, unconditional maximum likelihood is the preferred method

for parameter estimation. However, for unbalanced studies, matched studies and

those with many parameters, unconditional maximum likelihood methods are not

recommended; instead, exact methods are preferred. Two major methodologies are

available for comparing binomial proportions in the context of contingency tables,

those based on a conditional (e.g., Fisher’s exact test) or on an unconditional (Barnard

[1]) approach.

Here we propose a generalization of the unconditional approach which allows

calculation of exact p–values for logistic regression. The method, as implemented

here, is actually conditional on the observed number of cases, but not on the sufficient

statistics for parameters other than the intercept. We prove that the test size does not

exceed the nominal level under the null hypothesis of no disease–exposure association,

when controlling for additional covariates some of which may be continuous and

assuming the logistic model is appropriate.

A small simulation study suggests that this unconditional approach can, in at

least some circumstances, have better power than the corresponding exact conditional
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logistic regression. In one example, we tried to implement the approach based on just

a sample of the potential outcomes. This modification poorly approximated the

exact value, so we cannot recommend implementation based on a sample, even in

the context of many potential outcomes. In the discussion, we note the possibilities

of generalizations to calculation of confidence intervals, and to an approach that

incorporates features of both the conditional and unconditional approaches.
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