Recurrent Neural Network
Time Series/Sequence Data

- **Input:** \(\{x_1, x_2, \cdots, x_T\} \)
 - Each \(x_t \) is the feature at time step \(t \)
 - Each \(x_t \) can be an \(d \)-dimensional vector

- **Output:** \(\{y_1, y_2, \cdots, y_T\} \)
 - Each \(y_t \) is the output at step \(t \)
 - Multi-class output or Regression output:

 \[
 y_t \in \{1, 2, \cdots, L\} \quad \text{or} \quad y_t \in \mathbb{R}
 \]
Example: Time Series Prediction

Climate Data:

- x_t: temperature at time t
- y_t: temperature (or temperature change) at time $t + 1$
Example: Time Series Prediction

- **Climate Data:**
 - x_t: temperature at time t
 - y_t: temperature (or temperature change) at time $t + 1$

- **Stock Price:** Predicting stock price
Example: Language Modeling

The cat is ?
Example: Language Modeling

The cat is ?

- x_t: one-hot encoding to represent the word at step t ([0, ..., 0, 1, 0, ..., 0])
- y_t: the next word

$y_t \in \{1, \ldots, V\}$ \(V: \text{Vocabulary size} \)
Example: POS Tagging

- Part of Speech Tagging:
 Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, …)
- x_t: a vector to represent the word at step t
- y_t: label of word t
Recurrent Neural Network (RNN)

- x_t: t-th input
- s_t: hidden state at time t ("memory" of the network)

\[s_t = f(Ux_t + Ws_{t-1}) \]

W: transition matrix s_0 usually set to be 0
- Predicted output at time t:

\[o_t = \arg \max_i (Vs_t)_i \]
Recurrent Neural Network (RNN)

- **Training**: Find U, W, V to minimize empirical loss:

- **Loss of a sequence**:

$$
\sum_{t=1}^{T} \text{loss}(V s_t, y_t)
$$

(s_t is a function of U, W, V)
Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:
 \[
 \sum_{t=1}^{T} \text{loss}(V s_t, y_t)
 \]
 \(s_t\) is a function of U, W, V
- Loss on the whole dataset:
 Average loss of all sequence
Training: Find U, W, V to minimize empirical loss:

Loss of a sequence:

$$\sum_{t=1}^{T} \text{loss}(Vs_t, y_t)$$

(s_t is a function of U, W, V)

Loss on the whole dataset:

Average loss of all sequence

Solve by Stochastic Gradient Descent (SGD)
RNN: Text Classification

- Not necessary to output at each step
- Text Classification:

 Sentence \rightarrow category

 Output only at the final step
- Model: add a fully connected network to the final embedding
RNN: Neural Machine Translation
Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)

Solution:
- LSTM (Long Short Term Memory networks)
- GRU (Gated Recurrent Unit)
- ...
LSTM

RNN:

LSTM:
Conclusions

- Final project.

Questions?