Array and Linked List
Array

- Array of size n: stored in n contiguous memory space
- Access any element in the array: $O(1)$ time
- Drawbacks:
 - Need to reallocate memory when the size is changed
 - Insert element(s) to the array needs $O(n)$ time

```
0  9  26  31  41  42  53  68  76
```

Copy

```
0  9  26  31  41  42  53  68  76
```

Insert 28

```
0  9  26  28  31  41  42  53  68  76
```
Linked List

- Each element stores a data and a pointer to the next element
- Don’t need to reallocate memory when the size is changed
- Insertion: doesn’t need to copy $O(n)$ elements
- However, accessing the i-th element requires $O(i)$ time (worst case $O(n)$)

```
0 -> 9 -> 26 -> 31
```

Insert 28

```
0 -> 9 -> 26 -> 31
```

```
0 -> 9 -> 26 -> 31 -> 28
```
Dynamic Array

- Want to have an array with changeable size
- A data structure contains
 - An array of data \(a \)
 - \(a.size \): the current size of array
 - \(a.capacity \): the memory allocated for the array
- When inserting an element to the end:
 - If \(a.capacity > a.size + 1 \): directly put the element in the end of array
 - If \(a.capacity == a.size + 1 \): (1) double the capacity (2) reallocate a space with the new capacity (3) copy the contents to the new memory location
Dynamic Array

Capacity=4, size=3

| 0 | 9 | 26 |

Insert 31 to the end

Capacity=4, size=4

| 0 | 9 | 26 | 31 |

Insert 41 to the end

Capacity=8, size=5

| 0 | 9 | 26 | 31 | 41 |

Insert 42 to the end

Capacity=8, size=6

| 0 | 9 | 26 | 31 | 41 | 42 |
Python List

- Python List: a dynamic array of pointers (to support different objects in the list)
- Check http://www.laurentluce.com/posts/python-list-implementation/
Data Structure: Priority Queue
Priority Queue

- Priority queue is a data structure that stores a set of objects, and supports two basic operations:
 - **insert** (enqueue): insert a new object to the priority queue
 - **delete-min** (dequeue): finds the current minimum element, delete it from queue, and return it.
- Usually a priority queue also supports: find-min, clean, change one element
Heap

- A naive implementation of priority queue using sorted list:
 - $O(n)$ insert
 - $O(1)$ delete-min
A naive implementation of priority queue using sorted list:
- $O(n)$ insert
- $O(1)$ delete-min

Heap is one of the most useful (and simple) priority queue
It support
- $O(\log n)$ time per insert
- $O(\log n)$ time per delete-min
- $O(1)$ time for find-min
- $O(\log n)$ time for change one element
A heap is a complete binary tree with \(n \) nodes:
- Only the bottom most level may be partially filled (from left to right)
- Therefore, height is \(O(\log n) \)

In a heap, each node is larger than its parent (except root, which has no parent)

No other ordering rules \(\Rightarrow \) there can be multiple heaps for the same data
Heap: array representation

- Heap can be easily stored in an array
 (Because it is a full binary tree!)
- Traverse the heap from node \(i \)
 - Left child: node \(2i + 1 \)
 - Right child: node \(2i + 2 \)
 - Parent: node \(i/2 \)
How to get the minimum of the heap?

The minimum is always at the root!

Only takes $O(1)$ (constant) time.
Heap: insertion

- Insert a new element to the heap.
- Need to keep the constraints that each node is greater or equal to its parent.
- Use the operation called “heapify”
Heap: insertion

- Compare the current element and its parent; swap if they violate the ordering
- Worst case: go from leaf to root $\Rightarrow O(\log n)$ time

```python
### add value v to heap A
A.append(v)
i = len(A) - 1
while (i>0 && A[i/2] > A[i]):
    (A[i/2], A[i]) = (A[i], A[i/2])
i = i/2
```
Heap: insertion
Heap: delete-min

- Return and remove the root element.
- Need to maintain the heap structure:
 - Move the last element to the root
 - Heapify (adjust ordering from root to a leaf)
 - $O(\log n)$ time

```python
### remove the root element from A
A[0] = A[-1]
del A[-1]
i = 0
while (i<len(A)):
    ## Need to consider boundary cases in practice
        break
    if (A[i*2+1] < A[i*2+2]):
        (A[i], A[i*2+1]) = (A[i*2+1], A[i])
        i = i*2+1
    else:
        (A[i], A[i*2+2]) = (A[i*2+2], A[i])
        i = i*2+2
```
Using heap for sorting

- Insert all the elements to the heap
 \[O(n \log n)\]
- Extract and remove the minimum at a time (total \(n \) times)
 \[O(n \log n)\]
- Heap-sort: \(O(n \log n) \) time complexity
Data Structure: Binary Search Tree
Data Structure that supports “search”

- A table of records in which a key is used for retrieval.

 key1:value1 key2:value2 ... keyn:valuen

- Store in an array:

 O(n) search time (in the worst case, go through the whole array)

- Can we have a better structure to improve the search time?
Binary Search Tree

- Binary search tree property:
 - The key in each node \geq any key stored in the left sub-tree
 - The key in each node \leq any key stored in the right sub-tree
Searching for a key

Given a key k, search for the node with this key

- For node i, if $\text{key}[i] > k$
 Only need to search for the left subtree
- For node i, if $\text{key}[i] < k$
 Only need to search for the right subtree
Searching for a key

- Go from root to leaf.
- Time: proportional to the **height** of the tree
 \(O(\log n) \) if the tree is balanced.

Search for 4
Insert a key

- Step 1. Find the insert location
 \(O(\log n) \) time using BST search algorithm
 (assume height = \(O(\log n) \))
- Step 2. Insert the node: constant time
Insert a key

- **Step 1. Find the insert location**
 \(O(\log n) \) time using BST search algorithm
 (assume height = \(O(\log n) \))

- **Step 2. Insert the node:** constant time

- **Step 3. Balance the tree**
 Various ways (AVL tree, Red black tree, etc)
 Sublinear time (often \(O(\log n) \))
Overall Time Complexity

AVL Tree (Balanced Binary Tree): guaranteed $O(\log n)$ tree height
- Space: $O(n)$
- Search: $O(\log n)$
- Insert: $O(\log n)$
- Delete: $O(\log n)$

Red Black Tree: guaranteed $O(\log n)$ tree height
- Space: $O(n)$
- Search: $O(\log n)$
- Insert: $O(\log n)$
- Delete: $O(\log n)$
Data Structure: Hash Tables
Hash Tables

- A data structure that supports insert, search, delete in $O(1)$ time (in expectation)
- Store the key-value pairs:

 key1:value1 key2:value2 ... keyn:valuen
Hash Tables

- A data structure that supports **insert**, **search**, **delete** in $O(1)$ time (in expectation)
- Store the key-value pairs:
 \[
 \text{key1:value1 key2:value2 ... keyn:valuen}
 \]
- Basic idea: save items in a key-indexed table (index is a function of the key)
- **Hash function**: method for computing array index from key

\[
\begin{align*}
\text{hash(103)} &= 3 \\
\text{hash(4571)} &= 1
\end{align*}
\]
Hash Tables

Issues:

- Designing the hash function f to map keys (input domain) to index (output domain)
- Collision Resolution: how to handle two keys that hash to the same index?

Space-time tradeoff: Designing the function and size of hash table:

- Large hash table: more memory but less time (less confliction)
- Smaller hash table: less memory but more time (more confliction)
Designing the Hash Function

- Ideal goal: Scramble the keys uniformly to produce a table index
 - Efficiently computable
 - Each table index equally likely for each key

- Commonly used hash functions:
 - Modulo by integer (usually prime). E.g., key%27 for 27 buckets
 - MD5
 - String: transform to integer first:

\[h = s[0] \cdot 26^{L-1} + \ldots + s[L-2] \cdot 26^1 + s[L-1] \cdot 26^0 \]
Collision: Two distinct keys hashing to the same index
Can be handled by a hash table of lists (each index stores a linked list)
- Hash: map key to integer i between 0 and $M - 1$
- Insert: insert to the i-th chain
- Search: need to search only i-th chain
Time and Space Complexity

- Worst case:
 - Search: $O(n)$
 - Insert: $O(n)$
 - Delete: $O(n)$

- Under uniform hashing assumption:
 - Search: $O(1)$ in average
 - Insert: $O(1)$ in average
 - Delete: $O(1)$ in average

- In python, dictionary is implemented by hash table
Two-Sum: A Linear Time Algorithm

- Insert everything in the hash table
- For each \(a[i] \), check whether \(\text{Target} - a[i] \) is in the hash table
- \(O(n) \) time in average

```python
def two_sum(a, T):
    n = len(a)
    mytable = {}
    for i in range(n):
        if (T-a[i]) in mytable:
            return (mytable[T-a[i]], i)
        mytable[a[i]] = i
    return -1
```
Python Data Structure: Sparse Matrix
Dense matrix Storage

- When storing the elements of a 2-D array in memory, these are allocated contiguous memory locations
 ⇒ A 2-D array must be linearized to 1-D in storage
- Dense matrix can be vectorized by column major or row major
- (numpy array is in row major)
Dense Matrix vs Sparse Matrix

- Any matrix $X \in \mathbb{R}^{m \times n}$ can be stored as dense or sparse.
- Dense Matrix: most entries in X are nonzero (mn space).
- Sparse Matrix: only few entries in X are nonzero ($O(nnz)$ space).
Sparse Matrix

- Widely-used format: Compressed Sparse Column (CSC), Compressed Sparse Row (CSR), ...

- CSC: three arrays for storing an $m \times n$ matrix with nnz nonzeros
 1. `val` (nnz real numbers): the values of each nonzero element
 2. `row_ind` (nnz integers): the row indices corresponding to the values
 3. `col_ptr` ($n + 1$ integers): the list of value indexes where each column starts

![Sparse Matrix Example](image)
Sparse Matrix

- Widely-used format: Compressed Sparse Column (CSC), Compressed Sparse Row (CSR), ...
- CSR: three arrays for storing an $m \times n$ matrix with nnz non-zeroes
 1. `val` (nnz real numbers): the values of each non-zero element
 2. `col_ind` (nnz integers): the column indices corresponding to the values
 3. `row_ptr` ($m + 1$ integers): the list of value indexes where each row starts

```
 10  0  0
  0 30  0
  0 40  0
 20 50  0
  0  0 60
```

`Val`: 10 30 40 20 50 60
`col_idx`: 0 1 1 0 1 2
`row_ptr`: 0 1 2 3 5 6

The CSR format in scipy.

Can be constructed from dense matrix, sparse matrix, shape tuple (empty matrix), \((i,j,v)\) pairs, or the three arrays for CSR.

```python
>>> import scipy.sparse as sparse
>>> mtx = sparse.csr_matrix((3, 4))
>>> mtx.todense()
matrix([[0, 0, 0, 0],
        [0, 0, 0, 0],
        [0, 0, 0, 0]], dtype=int8)
>>> mtx = sparse.csr_matrix(((10,10), ([1, 2], [2, 3])))
>>> mtx.todense()
matrix([[0, 0, 0, 0],
        [0, 0, 10, 0],
        [0, 0, 0, 10]])
```
Sparse Matrix in Python

```python
>>> mtx.data
array([10, 10])
>>> mtx.indices
array([2, 3], dtype=int32)
>>> mtx.indptr
array([0, 0, 1, 2], dtype=int32)
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> indptr = np.array([0, 2, 3, 6])
>>> mtx = sparse.csr_matrix((data, indices, indptr))
>>> mtx.todense()
matrix([[1, 0, 2],
        [0, 0, 3],
        [4, 5, 6]])
```
Sparse Matrix in Python

- The CSC format in scipy.
- Can be constructed from dense matrix, sparse matrix, shape tuple (empty matrix), \((i, j, v)\) pairs, or the three arrays for CSC.

```python
>>> import scipy.sparse as sparse
>>> mtx = sparse.csc_matrix((3, 4))
>>> mtx.todense()
matrix([[0, 0, 0, 0],
        [0, 0, 0, 0],
        [0, 0, 0, 0]], dtype=int8)
>>> mtx = sparse.csc_matrix(([10,10], ([1, 2], [2, 3])))
matrix([[0, 0, 0, 0],
        [0, 0, 10, 0],
        [0, 0, 0, 10]])
```
Coming up

- Numerical Linear Algebra

Questions?