Numpy
Numpy

Numpy provides:

- The definition of multi-dimensional arrays in python
- Efficient operations for manipulating the arrays/matrix
- These things are widely used for statistical computing
Defining an np.array

- Import numpy:
  ```
  >>> import numpy as np
  ```

- “np.array” is a basic numpy multi-dimensional array

- Shape: a tuple of integers giving the size of each dimension
  ```
  >>> a = np.array([1, 2, 3])
  >>> type(a)
  <type 'numpy.ndarray'>
  >>> a.ndim
  1
  >>> a.shape
  (3,)
  >>> a = np.array([[1,2], [3,4]])
  >>> a.ndim
  2
  >>> a.shape
  (2, 2)
  ```
Creating Arrays

- Using np.arange:
  ```python
  >>> a = np.arange(10)
  >>> a
  array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
  ```

- Commonly used arrays:
  ```python
  >>> a = np.ones((2, 2))
  >>> a
  array([[ 1.,  1.],
         [ 1.,  1.]])
  >>> b = np.zeros(2, 2)
  >>> b
  array([[ 0.,  0.],
         [ 0.,  0.]])
  >>> c = np.eye(2)
  >>> c
  array([[ 1.,  0.],
         [ 0.,  1.]])
  ```
Creating Arrays

```python
>>> d = np.diag(np.array([1, 2]))
>>> d
array([[1, 0],
       [0, 2]])
```

Creating a random array:

```python
>>> a = np.random.rand(2,2)
>>> a
array([[ 0.86291659,  0.55238008],
       [ 0.69545018,  0.74234538]])
```
Array types

- Check the type of your array:

  ```python
  >>> a = np.array([[1, 2], [3, 4]])
  >>> a.dtype
  dtype('int64')
  >>> b = np.random.random((2, 2))
  >>> b.dtype
  dtype('float64')
  >>> a = a+b
  >>> a.dtype
  dtype('float64')
  ```

- Types:
 - int, bool, float (default), complex, str, …
>>> a = np.random.rand(2,2) * 5
>>> a
array([[0.13924165, 2.19114316],
 [1.87070166, 3.49563945]])
>>> b = a.astype(int)
>>> b
array([[0, 2],
 [1, 3]])
>>> b.dtype
dtype('int64')
>>> a = np.diag(np.arange(3))
>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 0, 2]])

>>> a[1, 1]
1
>>> a[1][1]
1
>>> a[2, 1] = 10

>>> a
array([[0, 0, 0],
 [0, 1, 0],
 [0, 10, 2]])

>>> a[1]
array([0, 1, 0])
Slicing

Access a subset of the array

```python
>>> a[0,3:5]
array([[3, 4]])
```

```python
>>> a[4:,4:]
array([[44, 45],
       [54, 55]])
```

```python
>>> a[2:]
array([[2, 12, 22, 32, 42, 52]])
```

```python
>>> a[2::2,::2]
array([[20, 22, 24],
       [40, 42, 44]]
```

(Figure from http://www.scipy-lectures.org/intro/numpy/array_object.html#indexing-and-slicing)
Slicing

Important:

- Slicing will just create a “view” of the array, so the array is not copied in memory.

```python
generate_ipython
>>> a = np.diag([1, 2, 3])
>>> a
array([[1, 0, 0],
       [0, 2, 0],
       [0, 0, 3]])
>>> b = a[1, :]
>>> b
array([0, 2, 0])
>>> b[0] = 1
>>> b
array([1, 2, 0])
>>> a
array([[1, 0, 0],
       [1, 2, 0],
       [0, 0, 3]])
>>> b = b + 1
>>> b
array([2, 3, 1])
```
Slicing

```python
>>> b
array([2, 3, 1])
>>> a
array([[1, 0, 0],
       [1, 2, 0],
       [0, 0, 3]])
>>> np.may_share_memory(a,b)
False
```
More on indexing

- **Using boolean masks**

  ```python
  >>> a = np.array([[1, 2], [3, 4], [5, 6]])
  >>> bool_idx = (a > 2)
  >>> bool_idx
  array([[False, False],
          [True, True],
          [True, True]], dtype=bool)
  >>> b = a[bool_idx]
  >>> b
  array([3, 4, 5, 6])
  >>> np.may_share_memory(a, b)
  False
  ```

- **Using integer array indexing:**

  ```python
  >>> a
  array([[1, 2],
          [3, 4],
          [5, 6]])
  >>> a = np.array([[1, 2], [3, 4], [5, 6]])
  >>> b = a[[0, 1, 2], [0, 1, 0]]
  >>> b
  array([1, 4, 5])
  ```
Elementwise Operators

\[+, -, *, /, **\] are elementwise operators.

```python
>>> a
array([[1, 2, 3],
       [4, 5, 6]])

>>> b
array([[4, 5, 6],
       [1, 2, 3]])

>>> a+b
array([[5, 7, 9],
       [5, 7, 9]])

>>> a-b
array([[-3, -3, -3],
       [ 3, 3, 3]])

>>> a*b
array([[ 4, 10, 18],
       [ 4, 10, 18]])

>>> a/b
array([[0, 0, 0],
       [4, 2, 2]])

>>> a**b
array([[ 1, 32, 729],
       [ 4, 25, 216]])
```
Element-wise Operators

- Element-wise operator works if the size matches
- Sometimes it’s also possible to do element-wise operators if Numpy can transform these arrays to the same size.

```python
>>> a
array([[1, 2, 3],
       [4, 5, 6]])

>>> a + 1
array([[2, 3, 4],
       [5, 6, 7]])

>>> a + np.array([1, 2, 3])
array([[2, 4, 6],
       [5, 7, 9]])

>>> a + np.array([1], [2])
array([[2, 3, 4],
       [6, 7, 8]])
```
Matrix Multiplication

- Using “dot” instead of “*”

```python
>>> a
array([[1, 2],
        [3, 4]])

>>> b = a

>>> a.dot(b)
array([[ 7, 10],
        [15, 22]])
```
reduction

- **Sum**: sum over the rows/columns or the whole matrix.
  ```python
  >>> a
  array([[1, 2],
         [3, 4]])
  >>> a.sum()
  10
  >>> a.sum(axis=0)
  array([4, 6])
  >>> a.sum(axis=1)
  array([3, 7])
  ```

- **min/max**: find min or max over rows/columns or the whole matrix.
  ```python
  >>> a.min()
  1
  >>> a.min(axis=0)
  array([1, 2])
  >>> a.min(axis=1)
  array([1, 3])
  ```
Reshape

- **ravel**: flattening the array
  ```python
  >>> a = np.array([[1, 2, 3], [4, 5, 6]])
  >>> a.ravel()
  array([1, 2, 3, 4, 5, 6])
  ```

- **reshape**: reshape the array (the dimensions have to match)
  ```python
  >>> a = np.array([[1, 2, 3], [4, 5, 6]])
  >>> a.reshape((3, 2))
  array([[1, 2],
          [3, 4],
          [5, 6]])
  ```

- **transpose**:
  ```python
  >>> a.T
  array([[1, 4],
          [2, 5],
          [3, 6]])
  ```
Python uses row-major storage

- When storing the elements of a 2-D array in memory, these are allocated contiguous memory locations
 ⇒ A 2-D array must be linearized to 1-D in storage
- Row major vs Column major
- Python uses row major
Try to use matrix operations

- Matrix operations in numpy are highly optimized (often using C/Fortran)
- Try to use matrix operations when possible
- Excesses: compare the element-wise product:

  ```python
  n = 1000
  a = np.ones(n, n))
  for i in range(n):
      for j in range(n):
          a[i][j] = a[i][j]*4.0
  ```

- Compare with

  ```python
  a = a*4.0
  ```
Matrix product

- Calling numpy matrix product is much faster than hand-written loops
- Numpy matrix product is using Blas library (will go back later)
- Three levels of blas:
 - Level 1: vector operations
 - Level 2: Matrix-vector product
 - Level 3: Matrix-matrix product (much faster than hand-written loops in C++)
- Exercise: compare the computation of matrix product with loops and with \texttt{a.dot(b)}
Basic algorithms and data structure.

Questions?