Outline

- Multi-core v.s. multi-processor
- Parallel Gradient Descent
- Parallel Stochastic Gradient
- Parallel Coordinate Descent
Parallel Programming

Parallel algorithms can be different in the following two cases:

- **Shared Memory Model (Multiple cores/multiple processors)**
 - Independent L1 cache
 - Shared/independent L2 cache
 - Shared memory

- **Distributed Memory Model**
 - Multiple computers
Shared Memory Model (Multiple cores)

- Shared memory model: each CPU can access the same memory space
- Programming tools:
 - C/C++: openMP, C++ thread, pthread, intel TBB, ...
 - Python: thread, ...
 - Matlab: parfor, ...

```
CPU          ------          CPU
         |                 |
         |                 |
         v                 v
  System Memory
```

Parallel for loop in OpenMP

```c
#pragma omp parallel for private(i)
for(i=0; i<w_size; i++)
g[i] = w[i] + g[i];
```
Shared Memory Model

Processor 0
- Core 0
 - CPU
 - L1 cache

 L2 cache

Processor 1
- Core 0
 - CPU
 - L1 cache

 L1 cache

 L2 cache

System memory
Two types of shared memory model:
1. Uniform Memory Access (UMA)
2. Non-Uniform Memory Access (NUMA)
Distributed Memory Model

- Programming tools: MPI, Hadoop, Spark, …

(Figure from http://web.sfc.keio.ac.jp/rdv/keio/sfc/teaching/architecture/computer-architecture-2013/lec09-smp.html)
Parallel Gradient Descent
Parallel Gradient Descent

- Gradient descent:
 \[\mathbf{x} \leftarrow \mathbf{x} - \alpha \nabla f(\mathbf{x}) \]
- Gradient computation is usually embarrassingly parallel
- Example: empirical risk minimization can be written as
 \[\arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w}) \]

 - Partition the dataset into \(k \) subsets \(S_1, \ldots, S_k \)
 - Each machine or CPU computes \(\sum_{i \in S_i} \nabla f_i(\mathbf{w}) \)
 - Aggregated local gradients to get the global gradient (communication)

 \[\nabla f(\mathbf{w}) = \frac{1}{n} \left(\sum_{i \in S_1} \nabla f_i(\mathbf{w}) + \cdots + \sum_{i \in S_k} \nabla f_i(\mathbf{w}) \right) \]
Parallel Stochastic Gradient
Stochastic Gradient (SG):

For $t = 1, 2, \ldots i$

Randomly pick an index i

$w^{t+1} \leftarrow w^t - \eta^t \nabla f_i(w^t)$

Computation of $\nabla f_i(w^t)$ only depends on the i-th sample—usually cannot be parallelized.

Parallelizing SG is a hard research problem.
Mini-batch SG

- Mini-batch SG with batch size b:

 For $t = 1, 2, \ldots$

 Randomly pick a subset $S \subseteq \{1, \ldots, n\}$ with size b

 $w^{t+1} \leftarrow w^t - \eta^t \frac{1}{b} \sum_{i \in S} \nabla f_i(w^t)$

 - Equivalent to gradient descent when $b = n$
 - Equivalent to stochastic gradient when $b = 1$
Mini-batch SG

- Mini-batch SG with batch size b:

 For $t = 1, 2, \ldots$

 Randomly pick a subset $S \subseteq \{1, \ldots, n\}$ with size b

 \[
 w^{t+1} \leftarrow w^t - \eta^t \frac{1}{b} \sum_{i \in S} \nabla f_i(w^t)
 \]

- Equivalent to gradient descent when $b = n$
- Equivalent to stochastic gradient when $b = 1$
- Parallelization with k processors:

 Let $S = S_1 \cup S_2 \cup \cdots \cup S_k$

 \[
 \sum_{i \in S} \nabla f_i(w^t) = \sum_{i \in S_1} \nabla f_i(w^t) + \sum_{i \in S_2} \nabla f_i(w^t) + \cdots + \sum_{i \in S_k} f_i(w^t)
 \]

 can be computed in parallel

- Other versions: divide-and-average (Mann et al., 2009; Zinkevich et al., 2010)
Mini-batch SG

- How to choose batch size b?

smaller b (batch size) larger

faster convergence slower

more Communication time less
Mini-batch SG on distributed systems

- Can we avoid wasting communication time?
- Use **non-blocking** network IO:

 Keep computing updates while aggregating the gradient

See (Dekel et al., “Optimal Distributed Online Prediction Using Mini-Batches”. In JMLR 2012)
Asynchronous Stochastic Gradient

- Synchronized algorithms: all the machine has to stop and synchronize at some points
 ⇒ longer waiting time
The original SG:

For $t = 1, 2, \ldots$

Randomly pick an index i

$w \leftarrow w - \eta \nabla f_i(w)$
The asynchronous parallel SG:

Each thread repeatedly performs the following updates:

For $t = 1, 2, \ldots$

Randomly pick an index i

$$w \leftarrow w - \eta \nabla f_i(w)$$
Asynchronous Stochastic Gradient (shared memory)

- The asynchronous parallel SG:

 Each thread repeatedly performs the following updates:
 For $t = 1, 2, \ldots$

 Randomly pick an index i

 $w \leftarrow w - \eta \nabla f_i(w)$

- Main trick: in shared memory systems, every threads can access the same parameter w

- First discussed in (Langford et al., “Slow learners are fast”. In NIPS 2009)

Asynchronous Stochastic Gradient (shared memory)

- For convex function, converges to the global optimum under certain conditions:
 1. bounded delay,
 2. small confliction rate
- A general framework proving the convergence rate of asynchronous SGD and coordinate descent converge to stationary points:
 (Prove the linear speedup for asynchronous algorithms).
Asynchronous Stochastic Gradient (distributed memory)

- Use a parameter server to update the parameters

\[w' = w - \eta \Delta w \]

See Dean et al., “Large Scale Distributed Deep Networks”, in NIPS 2012
Parallel Coordinate Descent
(Stochastic) Coordinate Descent (CD):

For $t = 1, 2, \ldots$

Randomly pick an index i

$$w_i^{t+1} \leftarrow w_i^t - (\arg\min_\delta f(w^t - \delta e_i))$$

A simplified version: each coordinate is updated by a gradient step

For $t = 1, 2, \ldots$

Randomly pick an index i

$$w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(w^t)$$

How to parallelize it?
Synchronized Parallel Coordinate Descent

- Synchronized Parallel Coordinate Descent:

For \(t = 1, 2, \ldots \)

Randomly pick a subset \(S \subset \{1, \ldots, n\} \) with size \(b \)

\[
\begin{align*}
& w_{i}^{t+1} \leftarrow w_{i}^{t} - \eta \nabla_{i} f(w^{t}) \text{ for all } i \in S
\end{align*}
\]
Synchronized Parallel Coordinate Descent

- Synchronized Parallel Coordinate Descent:

 For $t = 1, 2, \ldots$

 Randomly pick a subset $S \subset \{1, \ldots, n\}$ with size b

 $w_i^{t+1} \leftarrow w_i^t - \eta \nabla_i f(w^t)$ for all $i \in S$

- Parallelization: let $S = S_1 \cup S_2 \cup \cdots \cup S_k$,

 j-th machine updates the variables in S_j

- Will it converge?

 Yes, if η is small enough

First discussed in Bradley et al., “Parallel coordinate descent for ℓ_1-regularized loss minimization”. In ICML 2011

Asynchronous Parallel Coordinate Descent

- The asynchronous parallel coordinate descent:

 Each thread repeatedly performs the following updates:
 For $t = 1, 2, \ldots$
 Randomly pick an index i
 $w \leftarrow w - \eta \nabla f_i(w)$
Asynchronous Parallel Coordinate Descent

- The asynchronous parallel coordinate descent:

 Each thread repeatedly performs the following updates:
 For $t = 1, 2, \ldots$
 Randomly pick an index i
 $w \leftarrow w - \eta \nabla f_i(w)$

- Main trick: in shared memory systems, every thread can access the same parameter w

- First implemented in (Bradley et al., “Parallel coordinate descent for ℓ_1-regularized loss minimization”. In ICML 2011)

Coming up

- Next class: Support Vector Machines (SVM)

Questions?