Outline

- Convex vs Nonconvex Functions
- Coordinate Descent
- Gradient Descent
- Newton’s method
- Stochastic Gradient Descent
Numerical Optimization

- Numerical Optimization:
 \[\min_X f(X) \]

- Can be applied to computer science, economics, control engineering, operating research, ...

- **Machine Learning**: find a model that **minimizes** the prediction error.
Properties of the Function

- Smooth function: functions with continuous derivative.
 Example: ridge regression
 \[
 \arg\min_w \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2
 \]

- Non-smooth function: Lasso, primal SVM

 Lasso: \[
 \arg\min_w \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1
 \]

 SVM: \[
 \arg\min_w \sum_{i=1}^n \max(0, 1 - y_i w^T x_i) + \frac{\lambda}{2} \|w\|^2
 \]
A function is convex if:

\[\forall x_1, x_2, \forall t \in [0, 1], f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2) \]

No local optimum (why?)

Figure from Wikipedia
Convex Functions

- If $f(x)$ is twice differentiable, then
 f is convex if and only if $\nabla^2 f(x) \succeq 0$

- Optimal solution may not be unique:
 has a set of optimal solutions S

- Gradient: capture the first order change of f:

 $$f(x + \alpha d) = f(x) + \alpha \nabla f(x)^T d + O(\alpha^2)$$

- If f is convex and differentiable, we have the following optimality condition:
 $$x^* \in S \text{ if and only if } \nabla f(x) = 0$$
Strongly Convex Functions

- f is strongly convex if there exists an $m > 0$ such that
 \[f(y) \geq f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \| y - x \|^2 \]

- A strongly convex function has a unique global optimum x^* (why?)

- If f is twice differentiable, then
 \[f \text{ is strongly convex if and only if } \nabla^2 f(x) \succ mI \text{ for all } x \]

- Gradient descent, coordinate descent will converge linearly (will see later)
If f is nonconvex, most algorithms can only converge to stationary points.

\bar{x} is a stationary point if and only if $\nabla f(\bar{x}) = 0$.

Three types of stationary points:

1. Global optimum
2. Local optimum
3. Saddle point

Example: matrix completion, neural network, . . .

Example: $f(x, y) = \frac{1}{2}(xy - a)^2$
Coordinate Descent
Coordinate Descent

- Update one variable at a time
- Coordinate Descent: repeatedly perform the following loop

 Step 1: pick an index $i$$\quad$
 Step 2: compute a step size δ^* by (approximately) minimizing

 $$\argmin_{\delta} f(x + \delta e_i)$$

 Step 3: $x_i \leftarrow x_i + \delta^*$
Coordinate Descent (update sequence)

- Three types of updating order:
 - Cyclic: update sequence
 \[X_1, X_2, \ldots, X_n, X_1, X_2, \ldots, X_n, \ldots \]
 - 1st outer iteration
 - 2nd outer iteration
 - Randomly permute the sequence for each outer iteration (faster convergence in practice)
 Some interesting theoretical analysis for this recently
Coordinate Descent (update sequence)

- Three types of updating order:
 - Cyclic: update sequence

\[
\begin{align*}
X_1, X_2, \ldots, X_n, & \quad X_1, X_2, \ldots, X_n, \ldots \\
& \quad \text{1st outer iteration} \quad \text{2nd outer iteration}
\end{align*}
\]

- Randomly permute the sequence for each outer iteration (faster convergence in practice)
 Some interesting theoretical analysis for this recently
 - C.-P. Lee and S. J. Wright, Random Permutations Fix a Worst Case for Cyclic Coordinate Descent. 2016

- Random: each time pick a random coordinate to update
 - Typical way: sample from uniform distribution
 - Sample from uniform distribution vs sample from biased distribution

 - P. Zhao and T. Zhang, Stochastic Optimization with Importance Sampling for Regularized Loss Minimization. In ICML 2015
 - D. Csiba, Z. Qu and P. Richtarik, Stochastic Dual Coordinate Ascent with Adaptive Probabilities. In ICML 2015
Greedy Coordinate Descent

- Greedy: choose the most “important” coordinate to update
- How to measure the importance?
 - By first derivative: \(|\nabla_i f(x)| \)
 - By first and second derivative: \(|\nabla_i f(x)/\nabla_{ii}^2 f(x)| \)
 - By maximum reduction of objective function

\[
i^* = \arg\max_{i=1,\ldots,n} \left(f(x) - \min_{\delta} f(x + \delta e_i) \right)
\]

- Need to consider the time complexity for variable selection
- Useful for kernel SVM (see lecture 6)
Variables are divided into blocks \(\{ \mathcal{X}_1, \ldots, \mathcal{X}_p \} \), where each \(\mathcal{X}_i \) is a subset of variables and

\[
\mathcal{X}_1 \cup \mathcal{X}_2, \ldots, \mathcal{X}_p = \{1, \ldots, n\}, \quad \mathcal{X}_i \cap \mathcal{X}_j = \varnothing, \quad \forall i, j
\]

Each time update a \(\mathcal{X}_i \) by (approximately) solving the subproblem within the block.

Example: alternating minimization for matrix completion (2 blocks). (See lecture 7)
Coordinate Descent (convergence)

- Converge to optimal if $f(\cdot)$ is convex and smooth
- Has a linear convergence rate if $f(\cdot)$ is strongly convex
- Linear convergence: error $f(x^t) - f(x^*)$ decays as
 $$\beta, \beta^2, \beta^3, \ldots$$
 for some $\beta < 1$.
- Local linear convergence: an algorithm converges linearly after
 $$\|x - x^*\| \leq K$$
 for some $K > 0$
Coordinate Descent: other names

- Alternating minimization (matrix completion)
- Iterative scaling (for log-linear models)
- Decomposition method (for kernel SVM)
- Gauss Seidel (for linear system when the matrix is positive definite)
- ...
Gradient Descent
Gradient descent algorithm: repeatedly conduct the following update:

$$x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t)$$

where $\alpha > 0$ is the step size

It is a fixed point iteration method:

$$x - \alpha \nabla f(x) = x$$ if and only if x is an optimal solution

Step size too large \Rightarrow diverge; too small \Rightarrow slow convergence
Gradient Descent: successive approximation

- At each iteration, form an approximation of $f(\cdot)$:

$$f(x^t + d) \approx \tilde{f}_{x^t}(d) := f(x^t) + \nabla f(x^t)^T d + \frac{1}{2} d^T \left(\frac{1}{\alpha} I \right) d$$

$$= f(x^t) + \nabla f(x^t)^T d + \frac{1}{2\alpha} d^T d$$

- Update solution by $x^{t+1} \leftarrow x^t + \text{argmin}_d \tilde{f}_{x^t}(d)$

- $d^* = -\alpha \nabla f(x^t)$ is the minimizer of $\text{argmin}_d \tilde{f}_{x^t}(d)$

- d^* will decrease the original objective function f if α (step size) is small enough
Gradient Descent: successive approximation

- However, the function value will decrease if

 Condition 1: \(\tilde{f}_x(d) \geq f(x + d) \) for all \(d \)

 Condition 2: \(\tilde{f}_x(0) = f(x) \)

- Why?

\[
\begin{align*}
 f(x^t + d^*) & \leq \tilde{f}_{x^t}(d^*) \\
 & \leq \tilde{f}_{x^t}(0) \\
 & = f(x^t)
\end{align*}
\]

- Condition 2 is satisfied by construction of \(\tilde{f}_{x^t} \)

- Condition 1 is satisfied if \(\frac{1}{\alpha} I \succeq \nabla^2 f(x) \) for all \(x \)
Gradient Descent: step size

- A twice differentiable function has L-Lipchitz continuous gradient if and only if
 \[\nabla^2 f(x) \leq L I \quad \forall x \]

- In this case, Condition 2 is satisfied if $\alpha < \frac{1}{L}$

- **Theorem:** gradient descent converges if $\alpha < \frac{1}{L}$

- **Theorem:** gradient descent converges linearly with $\alpha < \frac{1}{L}$ if f is strongly convex
Gradient Descent

- In practice, we do not know L.
- Step size α too large: the algorithm diverges
- Step size α too small: the algorithm converges very slowly
Gradient Descent: line search

- d^* is a “descent direction” if and only if $(d^*)^T \nabla f(x) < 0$
- Armijo rule backtracking line search:

 $\text{Try } \alpha = 1, \frac{1}{2}, \frac{1}{4}, \ldots \text{ until it satisfies}$

 $$f(x + \alpha d^*) \leq f(x) + \gamma \alpha (d^*)^T \nabla f(x)$$

 where $0 < \gamma < 1$

Figure from http://ool.sourceforge.net/ool-ref.html
Gradient Descent: line search

- Gradient descent with line search:
 - Converges to optimal solutions if f is smooth
 - Converges linearly if f is strongly convex

- However, each iteration requires evaluating f several times

- Several other step-size selection approaches
 - (an ongoing research topic, especially for stochastic gradient descent)
Gradient Descent: applying to ridge regression

Input: $X \in \mathbb{R}^{N \times d}$, $y \in \mathbb{R}^N$, initial $w^{(0)}$

Output: Solution $w^* := \text{argmin}_w \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$

1: $t = 0$
2: while not converged do
3: Compute the gradient
 \[g = X^T(Xw - y) + \lambda w \]
4: Choose step size α^t
5: Update $w \leftarrow w - \alpha^t g$
6: $t \leftarrow t + 1$
7: end while

Time complexity: $O(\text{nnz}(X))$ per iteration
Proximal Gradient Descent

- How can we apply gradient descent to solve the Lasso problem?

$$\arg\min_w \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1$$

- General composite function minimization:

$$\arg\min_x f(x) := \{g(x) + h(x)\}$$

where g is smooth and convex, h is convex but may be non-differentiable

- Usually assume h is simple (for computational efficiency)
Proximal Gradient Descent: successive approximation

- At each iteration, form an approximation of \(f(\cdot) \):

 \[
 f(x^t + d) \approx \tilde{f}_{x^t}(d) := g(x^t) + \nabla g(x^t)^T d + \frac{1}{2} d^T \left(\frac{1}{\alpha} I \right) d + h(x^t + d)
 \]
 \[
 = g(x^t) + \nabla g(x^t)^T d + \frac{1}{2\alpha} d^T d + h(x^t + d)
 \]

- Update solution by \(x^{t+1} \leftarrow x^t + \text{argmin}_d \tilde{f}_{x^t}(d) \)
- This is called “proximal” gradient descent
- Usually \(d^* = \text{argmin}_d \tilde{f}_{x^t}(d) \) has a closed form solution
Proximal Gradient Descent: ℓ_1-regularization

The subproblem:

$$x^{t+1} = x^t + \arg\min_d \nabla g(x^t)^T d + \frac{1}{2\alpha} d^T d + \lambda \|x^t + d\|_1$$

$$= \arg\min_u \frac{1}{2} \|u - (x^t - \alpha \nabla g(x^t))\|^2 + \lambda \alpha \|u\|_1$$

$$= S(x^t - \alpha \nabla g(x^t), \alpha \lambda),$$

where S is the soft-thresholding operator defined by

$$S(a, z) = \begin{cases}
 a - z & \text{if } a > z \\
 a + z & \text{if } a < -z \\
 0 & \text{if } a \in [-z, z]
\end{cases}$$
Proximal Gradient: soft-thresholding

Figure from http://jocelynchi.com/soft-thresholding-operator-and-the-lasso-solution/
Proximal Gradient Descent for Lasso

Input: $X \in \mathbb{R}^{N \times d}$, $y \in \mathbb{R}^N$, initial $w^{(0)}$

Output: Solution $w^* := \arg\min_w \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1$

1: $t = 0$

2: while not converged do

3: Compute the gradient

$$g = X^T(Xw - y)$$

4: Choose step size α^t

5: Update $w \leftarrow S(w - \alpha^t g, \alpha^t \lambda)$

6: $t \leftarrow t + 1$

7: end while

Time complexity: $O(\text{nnz}(X))$ per iteration
Newton’s Method
Newton’s Method

- Iteratively conduct the following updates:

\[\mathbf{x} \leftarrow \mathbf{x} - \alpha \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}) \]

where \(\alpha \) is the step size

- If \(\alpha = 1 \): converges quadratically when \(\mathbf{x}^t \) is close enough to \(\mathbf{x}^* \):

\[\| \mathbf{x}^{t+1} - \mathbf{x}^* \| \leq K \| \mathbf{x}^t - \mathbf{x}^* \|^2 \]

for some constant \(K \). This means the error \(f(\mathbf{x}^t) - f(\mathbf{x}^*) \) decays quadratically:

\[\beta, \beta^2, \beta^4, \beta^8, \beta^{16}, \ldots \]

- Only need few iterations to converge in this “quadratic convergence region”
Newton’s Method

However, Newton’s update rule is more expensive than gradient descent/coordinate descent.
Newton’s Method

- Need to compute $\nabla^2 f(x)^{-1} \nabla f(x)$
- Closed form solution: $O(d^3)$ for solving a d dimensional linear system
- Usually solved by another iterative solver:
 - gradient descent
 - coordinate descent
 - conjugate gradient method

- Examples: primal L2-SVM/logistic regression, ℓ_1-regularized logistic regression, ...
Newton’s Method

- At each iteration, form an approximation of $f(\cdot)$:

$$f(x^t + d) \approx \tilde{f}_{x^t}(d) := f(x^t) + \nabla f(x^t)^T d + \frac{1}{2\alpha} d^T \nabla^2 f(x) d$$

- Update solution by $x^{t+1} \leftarrow x^t + \text{argmin}_d \tilde{f}_{x^t}(d)$

- When x is far away from x^*, needs line search to guarantee convergence

- Assume $L I \succeq \nabla^2 f(x) \succeq m I$ for all x, then $\alpha \leq \frac{m}{L}$ guarantee the objective function value decreases because

$$\frac{L}{m} \nabla^2 f(x) \succeq \nabla^2 f(y) \ \forall x, y$$

- In practice, we often just use line search.
Proximal Newton

- What if \(f(x) = g(x) + h(x) \) and \(h(x) \) is non-smooth \((h(x) = \|x\|_1) \)?
- At each iteration, form an approximation of \(f(\cdot) \):
 \[
 f(x^t + d) \approx \tilde{f}_{x^t}(d) := g(x^t) + \nabla g(x^t)^T d + \frac{\alpha}{2} d^T \nabla^2 g(x) d + h(x + d)
 \]
- Update solution by \(x^{t+1} \leftarrow x^t + \text{argmin}_d \tilde{f}_{x^t}(d) \)
- Need another iterative solver for solving the subproblem
Stochastic Gradient Method
Stochastic Gradient Method: Motivation

- Widely used for machine learning problems (with large number of samples)
- Given training samples x_1, \ldots, x_n, we usually want to solve the following empirical risk minimization (ERM) problem:

$$\arg\min_w \sum_{i=1}^{n} \ell_i(x_i),$$

where each $\ell_i(\cdot)$ is the loss function
- Minimize the summation of individual loss on each sample
Stochastic Gradient Method

- Assume the objective function can be written as
 \[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

- Stochastic gradient method:
 Iterative conducts the following updates
 1. Choose an index \(i \) (uniform) randomly
 2. \(x^{t+1} \leftarrow x^t - \eta^t \nabla f_i(x^t) \)

- \(\eta^t > 0 \) is the step size

Why does SG work?

- \(\mathbb{E}_{i}[\nabla f_i(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) = \nabla f(x) \)

Is it a fixed point method? No if \(\eta > 0 \) because

\(x^* - \eta \nabla f_i(x^*) \neq x^* \)

Is it a descent method? No, because

\(f(x^t+1) \neq f(x^t) \)
Stochastic Gradient Method

- Assume the objective function can be written as
 \[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

- Stochastic gradient method:
 - Iterative conducts the following updates
 1. Choose an index \(i \) (uniform) randomly
 2. \(x^{t+1} \leftarrow x^t - \eta^t \nabla f_i(x^t) \)

- \(\eta^t > 0 \) is the step size
- Why does SG work?
 \[E_i[\nabla f_i(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) = \nabla f(x) \]
Stochastic Gradient Method

- Assume the objective function can be written as
 \[f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x) \]

- Stochastic gradient method:
 - Iterative conducts the following updates
 1. Choose an index \(i \) (uniform) randomly
 2. \(x^{t+1} \leftarrow x^t - \eta^t \nabla f_i(x^t) \)

- \(\eta^t > 0 \) is the step size
- Why does SG work?
 \[E_i[\nabla f_i(x)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x) = \nabla f(x) \]

- Is it a fixed point method? No if \(\eta > 0 \) because \(\mathbf{x}^* - \eta \nabla_i f(\mathbf{x}^*) \neq \mathbf{x}^* \)
- Is it a descent method? No, because \(f(x^{t+1}) \not< f(x^t) \)
Step size η has to decay to 0
(e.g., $\eta^t = Ct^{-a}$ for some constant a, C)

SGD converges sub-linearly

Many variants proposed recently
- SVRG, SAGA (2013, 2014): variance reduction
- AdaGrad (2011): adaptive learning rate
- RMSProp (2012): estimate learning rate by a running average of gradient.
- Adam (2015): adaptive moment estimation

Widely used in machine learning
AdaGrad: adaptive step size for each parameter

Update rule at the t-th iteration:

- Compute $\mathbf{g} = \nabla f(\mathbf{x})$
- Estimate the second moment: $G_{ii} = G_{ii} + g_i^2$ for all i
- Parameter update: $x_i \leftarrow x_i - \frac{\eta}{\sqrt{G_{ii}}} g_i$ for all i

Proposed for convex optimization in:

“Adaptive subgradient methods for online learning and stochastic optimization” (JMLR 2011)

“Adaptive Bound Optimization for Online Convex Optimization” (COLT 2010)
AdaGrad: adaptive step size for each parameter

Update rule at the t-th iteration:

- Compute $g = \nabla f(x)$
- Estimate the second moment: $G_{ii} = G_{ii} + g_i^2$ for all i
- Parameter update: $x_i \leftarrow x_i - \frac{\eta}{\sqrt{G_{ii}}} g_i$ for all i

Adam (Kingma and Ba, 2015): maintain both first moment and second moment

Update rule at the t-th iteration:

- Compute $g = \nabla f(x)$
- $m = \beta_1 m + (1 - \beta_1) g$
- $\hat{m} = m_t / (1 - \beta_1^t)$ (estimate of first moment)
- $v = \beta_2 v + (1 - \beta_2) g^2$
- $\hat{v} = v_t / (1 - \beta_2^t)$ (estimate of second moment)
- $x \leftarrow x - \eta \hat{m} / (\hat{v} + \epsilon)$

All the operations are element-wise
SGD is not a fixed point method: even if x^* is optimal,

$$x^* - \eta \nabla_i f(x^*) \neq x^*$$

Reason: $E[\nabla_i f(x^*)] = \nabla f(x^*) = 0$ but variance can be large

Variance reduction: reduce the variance so that variance $\to 0$ when $t \to \infty$.
SVRG (Johnson and Zhang, 2013)

For \(t = 1, 2, \ldots \)

1. \(\tilde{x} = x \)
2. \(\tilde{g} = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\tilde{x}) \)
3. For \(s = 1, 2, \ldots \)
 1. Randomly pick \(i \)
 2. \(x \leftarrow x - \eta \left(\nabla f_i(x) - \nabla f_i(\tilde{x}) + \tilde{g} \right) \)

Can easily show

- \(E[a_i] = 0 \) (unbiased)
- \(\text{Var}[a_i] = 0 \) when \(x = \tilde{x} = x^* \)

Have linear convergence rate
Stochastic Gradient: applying to ridge regression

- Objective function:

\[
\arg\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|^2
\]

- How to write as \(\arg\min_w \frac{1}{n} \sum_{i=1}^{n} f_i(w)\)?

- How to decompose into \(n\) components?
Objective function:

$$\arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \lambda \| \mathbf{w} \|^2$$

How to write as $\arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{w})$?

First approach: $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \lambda \| \mathbf{w} \|^2$

Update rule:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - 2\eta^t (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i - 2\eta^t \lambda \mathbf{w}$$

$$= (1 - 2\eta^t \lambda) \mathbf{w} - 2\eta^t (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i$$
Stochastic Gradient: applying to ridge regression

- Objective function:

\[
\arg\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|^2
\]

- How to write as \(\arg\min_w \frac{1}{n} \sum_{i=1}^{n} f_i(w)\)?

- First approach: \(f_i(w) = (w^T x_i - y_i)^2 + \lambda \|w\|^2\)

- Update rule:

\[
\begin{align*}
\mathbf{w}^{t+1} &\leftarrow \mathbf{w}^t - 2\eta^t (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i - 2\eta^t \lambda \mathbf{w} \\
&= (1 - 2\eta^t \lambda) \mathbf{w} - 2\eta^t (\mathbf{w}^T \mathbf{x}_i - y_i) \mathbf{x}_i
\end{align*}
\]

- Need \(O(d)\) complexity per iteration even if data is sparse
Stochastic Gradient: applying to ridge regression

- Objective function:

\[
\arg\min_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \| w \|^2
\]

- How to write as \(\arg\min_w \frac{1}{n} \sum_{i=1}^{n} f_i(w) \)?

- First approach: \(f_i(w) = (w^T x_i - y_i)^2 + \lambda \| w \|^2 \)

- Update rule:

\[
w^{t+1} \leftarrow w^t - 2\eta^t (w^T x_i - y_i) x_i - 2\eta^t \lambda w
\]

\[
= (1 - 2\eta^t \lambda) w - 2\eta^t (w^T x_i - y_i) x_i
\]

- Need \(O(d) \) complexity per iteration even if data is sparse

- Solution: store \(w = sv \) where \(s \) is a scalar
Stochastic Gradient: applying to ridge regression

- **Objective function:**
 \[
 \arg\min_w \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda \|w\|^2
 \]

- **Second approach:**
 define \(\Omega_i = \{j \mid X_{ij} \neq 0\} \) for \(i = 1, \ldots, n \)
 define \(n_j = |\{i \mid X_{ij} \neq 0\}| \) for \(j = 1, \ldots, d \)
 define \(f_i(w) = (w^T x_i - y_i)^2 + \sum_{j \in \Omega_i} \frac{\lambda n}{n_j} w_j^2 \)
Stochastic Gradient: applying to ridge regression

- Objective function:

 \[\text{argmin}_w \frac{1}{n} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda \|w\|^2 \]

- Second approach:

 define \(\Omega_i = \{ j \mid X_{ij} \neq 0 \} \) for \(i = 1, \ldots, n \)

 define \(n_j = |\{ i \mid X_{ij} \neq 0 \}| \) for \(j = 1, \ldots, d \)

 define \(f_i(w) = (w^T x_i - y_i)^2 + \sum_{j \in \Omega_i} \frac{\lambda n}{n_j} w_j^2 \)

 Update rule when selecting index \(i \):

 \[w_j^{t+1} \leftarrow w_j^t - 2\eta^t (x_i^T w^t - y_i) X_{ij} - \frac{2\eta^t \lambda n}{n_j} w_j^t, \quad \forall j \in \Omega_i \]

- Solution: update can be done in \(O(|\Omega_i|) \) operations
Next class: Parallel Optimization

Questions?