Outline

- Matrix Completion with Features
 - Inductive Matrix Completion
 - Graph-based Regularization
Example I: Movie Recommendation with User Features

- Given: rating matrix $A \in \mathbb{R}^{m \times n}$, user feature matrix $X \in \mathbb{R}^{m \times d}$
- Goal: predict unknown ratings
Example II: Movie Recommendation with Features

- Given, rating matrix $A \in \mathbb{R}^{m \times n}$, user features $X \in \mathbb{R}^{m \times d_1}$, item features $Y \in \mathbb{R}^{n \times d_1}$
- Goal: predict unknown ratings
Applications

- Ad-word Recommendation
- Tag recommendation
- Disease-gene linkage prediction
- ...
Inductive Matrix Completion
Inductive Matrix Completion

- Assume the rating matrix A is generated from XMY^T, where X is the row feature matrix and Y is the column feature matrix.
- Goal: Find the M matrix to minimize the error.
Inductive Matrix Completion

- $M \in \mathbb{R}^{d_1 \times d_2}$ may be large
 - Further assume M is a rank k matrix
- Inductive matrix factorization:

$$
\min_{U \in \mathbb{R}^{d_1 \times k}, V \in \mathbb{R}^{d_2 \times k}} \sum_{i,j \in \Omega} ((XUV^TY^T)_{ij} - A_{ij})^2 + \lambda \|U\|_F^2 + \lambda \|V\|_F^2
$$

where Ω is the observed set, A is the rating matrix, X, Y are feature matrices.

\[\begin{array}{cccc}
3 & 1 & 1 & 1 \\
2 & 3 & 3 & 3 \\
5 & 4 & 4 & 4 \\
4 & 2 & 2 & 2 \\
4 & 1 & 1 & 1 \\
1 & 3 & 3 & 3
\end{array} \sim
\begin{array}{c}
X \\
U \\
V^T \\
Y^T
\end{array} \]
Theoretical Guarantees

- Matrix Completion (without features):
 If the rating matrix $A \in \mathbb{R}^{m \times n}$ is sampled from a rank k matrix, under certain condition we can recover A with $O(kn \log^2(n))$ observed entries.

- Inductive Matrix Completion:
 If the rating matrix $A = XMY^T$ and M is rank k, under certain condition we can recover A with $O(dk \log k \log n)$ observed entries.

- Proved by the following papers:
 - Xu et al., “Speedup Matrix Completion with Side Information: Application to Multi-Label Learning”. In NIPS 2013.
 - Zhong et al., “Efficient Matrix Sensing using Rank-1 Gaussian Measurements”. In ALT 2015.
Applications

- Multi-label classification
- Yahoo Music challenge
- Biological application
- Semi-supervised clustering
The assumption $A = XMY^T$ means:

$$\text{col}(A) \subseteq \text{col}(X) \text{ and } \text{col}(A^T) \subseteq \text{col}(Y)$$

where $\text{col}(\cdot)$ denotes the column space of a matrix.

When features are not perfect:

$$\text{col}(A) \cap \text{col}(X)^T \neq \emptyset \text{ or } \text{col}(A^T) \cap \text{col}(Y)^T \neq \emptyset$$

Recovery by inductive matrix completion is impossible.
Graph-based Regularization
The similarity between users

- Assume we have m users with feature vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$
- Similarity of rows: Define the similarity matrix $S \in \mathbb{R}^{m \times m}$

$$S_{ij} = \text{similarity}(\mathbf{x}_i, \mathbf{x}_j),$$

where $\mathbf{x}_i, \mathbf{x}_j$ are features for the $i(j)$-th rows.
- The similarity function can be defined by many ways, for example,

$$\text{similarity}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma \| \mathbf{x}_i - \mathbf{x}_j \|^2)$$
The similarity graph

- S is a dense $m \times m$ matrix \Rightarrow High computational cost
- Usually, a sparse similarity graph is preferred
- Several approaches:
 - K-nearest neighbor graph
 - Thresholding S matrix
Matrix Completion with Graph Regularization

- Given, a partially observed rating matrix $A \in \mathbb{R}^{m \times n}$ and a similarity graph between users $S \in \mathbb{R}^{m \times m}$
- The similarity graph can be:
 - Constructed from features
 - Obtained by social activities
- Goal: predict unknown ratings
Matrix Completion with Graph Regularization

- Two approaches:
 - Average-based Regularization
 - Individual-based Regularization

- Discussed in
 - Ma et al., “Recommender Systems with Social Regularization”. In WSDM 2011
 - Rao et al., “Collaborative Filtering with Graph Information: Consistency and Scalable Methods”. In NIPS 2015
Average-based Regularization

- Compute matrices $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{n \times k}$ by solving

\[
\arg\min_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} \sum_{i,j \in \Omega} (A_{ij} - (UV^T)_{ij})^2 + \frac{\alpha}{2} \sum_{i=1}^{m} \|u_i - \frac{1}{\sum_k S_{ik}} \sum_j S_{ij} u_j\|^2 \\
+ \lambda \|U\|_F^2 + \lambda \|V\|_F^2
\]

where u_i is the i-th row of U.

Individual-based Regularization

- Compute matrices $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{n \times k}$ by solving

$$
\text{argmin}_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} \sum_{i,j \in \Omega} (A_{ij} - (UV^T)_{ij})^2 + \sum_{i,j} \frac{S_{ij}}{2} \|u_i - u_j\|^2 + \lambda \|U\|_F^2 + \lambda \|V\|_F^2
$$

where u_i is the i-th row of U.

- Can be written as

$$
\text{argmin}_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} \sum_{i,j \in \Omega} (A_{ij} - (UV^T)_{ij})^2 + \text{trace}(U^T(D - S)U) + \lambda \|U\|_F^2 + \lambda \|V\|_F^2
$$

where D is a diagonal matrix with $D_{ii} = \sum_j S_{ij}$.

- The matrix $L = D - S$ is called the Laplacian matrix.
Coming up

- Homework due Thursday in class
- Next class: paper presentations on advanced optimization topics

Questions?