Preamble to the theory
Training versus testing

- Out-of-sample error (generalization error):

\[E_{\text{out}} = E_x[e(h(x), f(x))] \]

What we want: small \(E_{\text{out}} \)
Training versus testing

- Out-of-sample error (generalization error):

\[E_{\text{out}} = E_x[e(h(x), f(x))] \]

What we want: small \(E_{\text{out}} \)

- In-sample error (training error):

\[E_{\text{in}} = \frac{1}{N} \sum_{n=1}^{N} e(h(x_n), f(x_n)) \]

This is what we can minimize
The 2 questions of learning

- $E_{out}(g) \approx 0$ is achieved through:

$$E_{out}(g) \approx E_{in}(g) \quad \text{and} \quad E_{in}(g) \approx 0$$
The 2 questions of learning

- $E_{\text{out}}(g) \approx 0$ is achieved through:

 \[E_{\text{out}}(g) \approx E_{\text{in}}(g) \quad \text{and} \quad E_{\text{in}}(g) \approx 0 \]

- Learning is thus split into 2 questions:
 - Can we make sure that $E_{\text{out}}(g) \approx E_{\text{in}}(g)$?
 - Hoeffding’s inequality (?)
 - Can we make $E_{\text{in}}(g)$ small?
 - Optimization (done)
What the theory will achieve

- Currently we only know

\[P[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N} \]
What the theory will achieve

- Currently we only know

\[P[|E_{in}(g) - E_{out}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N} \]

- What if \(M = \infty \)?
 (e.g., perceptron)
What the theory will achieve

- Currently we only know

\[P[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 2Me^{-2\epsilon^2N} \]

- What if \(M = \infty \)?
 (e.g., perceptron)

- **Todo:**
 We will establish a finite quantity to replace \(M \)

\[P[|E_{\text{in}}(g) - E_{\text{out}}(g)| > \epsilon] \leq 2m_\mathcal{H}(N)e^{-2\epsilon^2N} \]

- Study \(m_\mathcal{H}(N) \) to understand the trade-off for model complexity
Reducing M to finite number
Where did the M come from?

- The Bad events B_m:

 $|E_{\text{in}}(h_m) - E_{\text{out}}(h_m)| > \epsilon$ with probability $\leq 2e^{-2\epsilon^2 N}$
Where did the \(M \) come from?

- The \(\text{Bad} \) events \(\mathcal{B}_m \): \n \[\left| E_{\text{in}}(h_m) - E_{\text{out}}(h_m) \right| > \epsilon \] with probability \(\leq 2e^{-2\epsilon^2 N} \)

- The union bound:
 \[
P[\mathcal{B}_1 \text{ or } \mathcal{B}_2 \text{ or } \cdots \text{ or } \mathcal{B}_M] \leq P[\mathcal{B}_1] + P[\mathcal{B}_2] + \cdots + P[\mathcal{B}_M] \leq 2Me^{-2\epsilon^2 N}
\]

\[\text{consider worst case: no overlaps}\]

![Diagram showing overlap]

No overlap: bound is tight

Large overlap
Can we improve on M?

- ΔE_{out}: change in $+1$ and -1 areas
- ΔE_{in}: change in labels of data points
Can we improve on M?

- ΔE_{out}: change in $+1$ and -1 areas
- ΔE_{in}: change in labels of data points

$$|E_{\text{in}}(h_1) - E_{\text{out}}(h_1)| \approx |E_{\text{in}}(h_2) - E_{\text{out}}(h_2)|$$

Overlapped events!
What can we replace M with?

Instead of the whole input space
What can we replace M with?

Instead of the whole input space
Let’s consider a finite set of input points
What can we replace M with?

Instead of the whole input space
Let’s consider a finite set of input points
How many patterns of red and blue can you get?
A hypothesis: $h : \mathcal{X} \rightarrow \{-1, +1\}$
Dichotomies: mini-hypotheses

- A hypothesis: \(h : \mathcal{X} \rightarrow \{-1, +1\} \)
- A dichotomy: \(h : \{x_1, x_2, \ldots, x_N\} \rightarrow \{-1, +1\} \)

Number of hypotheses \(|\mathcal{H}|\) can be infinite
Number of dichotomies \(|\mathcal{H}(x_1, x_2, \ldots, x_N)|\): at most \(2^N\)

Candidate for replacing \(M\)
Dichotomies: mini-hypotheses

- A hypothesis: \(h : \mathcal{X} \rightarrow \{-1, +1\} \)
- A dichotomy: \(h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\} \)
- Number of hypotheses \(|\mathcal{H}|\) can be infinite
Dichotomies: mini-hypotheses

- A hypothesis: $h : \mathcal{X} \rightarrow \{-1, +1\}$
- A dichotomy: $h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(x_1, x_2, \cdots, x_N)|$: at most 2^N
Dichotomies: mini-hypotheses

- A hypothesis: $h : \mathcal{X} \rightarrow \{-1, +1\}$
- A dichotomy: $h : \{x_1, x_2, \cdots, x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(x_1, x_2, \cdots, x_N)|$:
 at most 2^N
Dichotomies: mini-hypotheses

- A hypothesis: $h : \mathcal{X} \rightarrow \{-1, +1\}$
- A dichotomy: $h : \{x_1, x_2, \ldots, x_N\} \rightarrow \{-1, +1\}$
- Number of hypotheses $|\mathcal{H}|$ can be infinite
- Number of dichotomies $|\mathcal{H}(x_1, x_2, \ldots, x_N)|$: at most 2^N
- Candidate for replacing M
The growth function

The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{x_1, \cdots, x_N \in \mathcal{X}} |\mathcal{H}(x_1, \cdots, x_N)|$$
The growth function

- The growth function counts the most dichotomies on any N points:

$$m_{\mathcal{H}}(N) = \max_{x_1, \ldots, x_N \in \mathcal{X}} |\mathcal{H}(x_1, \ldots, x_N)|$$

- The growth function satisfies:

$$m_{\mathcal{H}}(N) \leq 2^N$$
Growth function for perceptrons

Compute $m_\mathcal{H}(3)$ in 2-D space

What's $|\mathcal{H}(x_1, x_2, x_3)|$?
Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

$$m_{\mathcal{H}}(3) = 8$$
Growth function for perceptrons

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)
Growth function for perceptrons

Compute $m_{\mathcal{H}}(3)$ in 2-D space when \mathcal{H} is perceptron (linear hyperplanes)

Doesn’t matter because we only counts the most dichotomies
Growth function for perceptrons

- What’s $m_{\mathcal{H}}(4)$?
Growth function for perceptrons

- What’s $m_\mathcal{H}(4)$?
- (At least) missing two dichotomies:
Growth function for perceptrons

- What’s $m_{\mathcal{H}}(4)$?
- (At least) **missing** two dichotomies:

 ![Diagram showing two examples](image)

- $m_{\mathcal{H}}(4) = 14 < 2^4$
Example I: positive rays

\[h(x) = -1 \]

\[x_1 \quad x_2 \quad x_3 \quad \ldots \quad x_N \]

\[h(x) = +1 \]

\[a \]

\[\mathcal{H} \text{ is set of } h : \mathbb{R} \rightarrow \{-1, +1\} \]

\[h(x) = \text{sign}(x - a) \]

\[m_\mathcal{H}(N) = N + 1 \]
Example II: positive intervals

\[h(x) = -1 \]

\(x_1 \quad x_2 \quad x_3 \quad \ldots \)

\[h(x) = +1 \]

\[h(x) = -1 \]

\(x_N \)

\(\mathcal{H} \) is set of \(h : \mathbb{R} \to \{-1, +1\} \)

Place interval ends in two of \(N + 1 \) spots

\[m_{\mathcal{H}}(N) = \binom{N+1}{2} + 1 = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \]
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \rightarrow \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?

[Diagram of points within a rectangle]
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \rightarrow \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \rightarrow \{-1, +1\}$

 $h(x) = +1$ is convex

- How many dichotomies can we generate?
Example III: convex sets

- \mathcal{H} is set of $h : \mathbb{R}^2 \rightarrow \{-1, +1\}$

 $h(x) = +1$ is convex

- $m_\mathcal{H}(N) = 2^N$ for any N

- We say the N points are "shattered" by convex sets
The 3 growth functions

- \mathcal{H} is positive rays:
 \[m_{\mathcal{H}}(N) = N + 1 \]

- \mathcal{H} is positive intervals:
 \[m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \]

- \mathcal{H} is convex sets:
 \[m_{\mathcal{H}}(N) = 2^N \]
What’s next?

- Remember the inequality

\[\mathbb{P}[|E_{\text{in}} - E_{\text{out}}| > \epsilon] \leq 2M e^{-2\epsilon^2 N} \]
What’s next?

- Remember the inequality
 \[P[|E_{in} - E_{out}| > \epsilon] \leq 2Me^{-2\epsilon^2N} \]

- What happens if we replace \(M \) by \(m_H(N) \)?
 \(m_H(N) \) polynomial \(\Rightarrow \) Good!
What’s next?

- Remember the inequality

\[\mathbb{P}[|E_{\text{in}} - E_{\text{out}}| > \epsilon] \leq 2M e^{-2\epsilon^2 N} \]

- What happens if we replace \(M \) by \(m_{\mathcal{H}}(N) \)?

 \(m_{\mathcal{H}}(N) \) polynomial \(\Rightarrow \) Good!

- How to show \(m_{\mathcal{H}}(N) \) is polynomial?
Conclusions

- Next class: LFD 2.1, 2.2

Questions?