Outline

- Decision Tree
- Random Forest
- Gradient Boosted Decision Tree (GBDT)
Decision Tree

- Each node checks one feature x_i:
 - Go left if $x_i < \text{threshold}$
 - Go right if $x_i \geq \text{threshold}$
A real example

Play tennis or not

Outlook
- Sunny
 - Humidity
 - High
 - No
 - Normal
 - Yes
 - Rain
 - Overcast
 - Yes
 - Strong
 - No
 - Weak
 - Yes
Decision Tree

- Strength:
 - It’s a nonlinear classifier
 - Better interpretability
 - Can naturally handle categorical features
Decision Tree

- **Strength:**
 - It’s a **nonlinear** classifier
 - Better **interpretability**
 - Can naturally handle **categorical** features

- **Computation:**
 - Training: **slow**
 - Prediction: **fast**
 - \(h \) operations (\(h \): depth of the tree, usually \(\leq 15 \))
Splitting the node

- Classification tree: Split the node to maximize entropy
- Let S be set of data points in a node, $c = 1, \cdots, C$ are labels:

$$\text{Entropy} : H(S) = - \sum_{c=1}^{C} p(c) \log p(c),$$

where $p(c)$ is the proportion of the data belong to class c.

- Entropy = 0 if all samples are in the same class
- Entropy is large if $p(1) = \cdots = p(C)$

Bad split

Entropy: $-(1/3) \log(1/3) - (1/3) \log(1/3) - (1/3) \log(1/3)$

$= 1.58$

Good split

Entropy: $-1 \log^*(1) = 0$
Information Gain

- The averaged entropy of a split $S \rightarrow S_1, S_2$

$$\frac{|S_1|}{|S|} H(S_1) + \frac{|S_2|}{|S|} H(S_2)$$

- Information gain: measure how good is the split

$$H(S) - \left((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2) \right)$$
Information Gain

Entropy = 1.58

Averaged entropy: $\frac{2}{3} \times 1 + \frac{1}{3} \times 0 = 0.67$

Information gain: $1.58 - 0.67 = 0.91$
Information Gain

Entropy = 1.58

Entropy = 1.52

Entropy = 1.5

Averaged entropy: 1.51
Information gain: 1.58 – 1.51 = 0.07
Given the current note, how to find the best split?
Splitting the node

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)
Splitting the node

- Given the current note, how to find the best split?
- For all the features and all the threshold
 - Compute the information gain after the split
 - Choose the best one (maximal information gain)
- For n samples and d features: need $O(nd)$ time
Regression Tree

- Assign a real number for each leaf
- Usually **averaged** y values for each leaf
 (minimize square error)

![Regression Tree Diagram]

\[
\begin{align*}
 y_1 &= 1 & y_5 &= 2 & y_6 &= 3 \\
 y_2 &= 4 & y_4 &= 1 \\
 y_3 &= 100 & y_7 &= 200 \\
 y &= 0 & y &= 0
\end{align*}
\]
Regression Tree

Objective function:

$$\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + \text{(Regularization)}$$

The quality of partition $S = S_1 \cup S_2$ can be computed by the objective function:

$$\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,$$

where $y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i$, $y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i$
Objective function:

\[
\min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + \text{(Regularization)}
\]

The quality of partition \(S = S_1 \cup S_2 \) can be computed by the objective function:

\[
\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,
\]

where \(y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i \), \(y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i \)

Find the best split:
Try all the features & thresholds and find the one with **minimal** objective function
Parameters

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
Parameters

- Maximum depth: (usually ~ 10)
- Minimum number of nodes in each node: (10, 50, 100)
- Single decision tree is not very powerful· · ·
- Can we build multiple decision trees and ensemble them together?
Random Forest
Random Forest

- Random Forest (Bootstrap ensemble for decision trees):
 - Create T trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees

- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy

- Good software available:
 - R: “randomForest” package
 - Python: sklearn
Gradient Boosted Decision Tree
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$
F^* = \arg\min_F \sum_{i=1}^{n} \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^{T} f_m(x)
$$

(each f_m is a decision tree)
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg\min_{F} \sum_{i=1}^{n} \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^{T} f_m(x)$$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss
 - solve $f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$
 - update $F_m \leftarrow F_{m-1} + f_m$

$F_m(x) = \sum_{j=1}^{m} f_j(x)$ is the prediction of x after m iterations.
Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg \min_F \sum_{i=1}^n \ell(y_i, F(x_i)) \quad \text{with} \quad F(x) = \sum_{m=1}^T f_m(x)$$

(each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss
 - solve $f_m = \arg \min_{f_m} \sum_{i=1}^N \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$
 - update $F_m \leftarrow F_{m-1} + f_m$

$F_m(x) = \sum_{j=1}^m f_j(x)$ is the prediction of x after m iterations.

- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data
Gradient Boosted Decision Tree (GBDT)

- Approximate the current loss function by a quadratic approximation:

\[
\sum_{i=1}^{n} \ell_i(\hat{y}_i + f_m(x_i)) \approx \sum_{i=1}^{n} \left(\ell_i(\hat{y}_i) + g_i f_m(x_i) + \frac{1}{2} h_i f_m(x_i)^2 \right)
\]

\[
= \sum_{i=1}^{n} \frac{h_i}{2} \| f_m(x_i) - g_i/h_i \|^2 + \text{constant}
\]

where \(g_i = \partial_{\hat{y}_i} \ell_i(\hat{y}_i) \) is gradient,
\(h_i = \partial^2_{\hat{y}_i} \ell_i(\hat{y}_i) \) is second order derivative
Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\argmin_{f_m} \sum_{i=1}^{N} [f_m(x_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT.
- XGboost shows computing second order derivative yields better performance
Gradient Boosted Decision Tree

- Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\argmin_{f_m} \sum_{i=1}^{N} [f_m(x_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT.
- XGboost shows computing second order derivative yields better performance

Algorithm:
- Computing the current gradient for each \hat{y}_i.
- Building a base learner (decision tree) to fit the gradient.
- Updating current prediction $\hat{y}_i = F_m(x_i)$ for all i.
Gradient Boosted Decision Trees (GBDT)

Key idea:
- Each base learner is a decision tree
- Each regression tree approximates the functional gradient \(\frac{\partial \ell}{\partial F} \)
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i)=F_{m-1}(x_i)}$$
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient \(\frac{\partial \ell}{\partial F} \)

\[
F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \\
g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}
\]
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

$$f_1(x) \quad \xrightarrow{\text{update}} \quad F(x_i) \quad \xrightarrow{\text{update}} \quad f_2(x) \quad \xrightarrow{\text{update}} \quad F(x_i) \quad \xrightarrow{\text{update}} \quad f_T(x)$$

$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad g_m(x_i) = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i) = F_{m-1}(x_i)}$$
Gradient Boosted Decision Trees (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial f}$

\[(x, g_1) \quad \overset{\text{update}}{\longrightarrow} \quad F(x_i) \quad f_1(x) \]

\[(x, g_2) \quad \overset{\text{update}}{\longrightarrow} \quad F(x_i) \quad f_2(x) \]

\[(x, g_T) \quad \overset{\text{update}}{\longrightarrow} \quad F(x_i) \quad f_T(x) \]

Final prediction

\[F(x_i) = \sum_{j=1}^{T} f_j(x_i) \]
Conclusions

- Next class: Matrix factorization, word embedding

Questions?