Outline

- Linear Support Vector Machines
- Nonlinear SVM, Kernel methods
- Multiclass classification
Support Vector Machines

- Given training examples $(x_1, y_1), \cdots, (x_n, y_n)$
- Consider binary classification: $y_i \in \{+1, -1\}$
- Linear Support Vector Machine (SVM):

$$\arg\min_{w} C \sum_{i=1}^{n} \max(1 - y_i w^T x_i, 0) + \frac{1}{2} w^T w$$

(hinge loss with L2 regularization)
Goal: Find a hyperplane to separate these two classes of data:
if \(y_i = 1 \), \(\mathbf{w}^T \mathbf{x}_i \geq 1 \);
if \(y_i = -1 \), \(\mathbf{w}^T \mathbf{x}_i \leq -1 \).
Support Vector Machines

- Goal: Find a hyperplane to separate these two classes of data:
 \[y_i = 1, \quad w^T x_i \geq 1; \quad \text{if } y_i = -1, \quad w^T x_i \leq -1. \]

Prefer a hyperplane with maximum margin
Size of margin

- minimum of $\|x\|$ such that $w^T x = 1$
Size of margin

- minimum of $\|x\|$ such that $w^T x = 1$
- clearly, $x = \alpha \frac{w}{\|w\|}$ for some α (half margin)
Size of margin

- minimum of $\|x\|$ such that $w^T x = 1$
- clearly, $x = \alpha \frac{w}{\|w\|}$ for some α (half margin)
- $\alpha = \frac{1}{\|w\|}$
Size of margin

- minimum of $\|x\|$ such that $w^T x = 1$
- clearly, $x = \alpha \frac{w}{\|w\|}$ for some α (half margin)
- $\alpha = \frac{1}{\|w\|}$
- Maximize margin \Rightarrow minimize $\|w\|$
Support Vector Machines (hard constraints)

- SVM primal problem (with hard constraints):

\[
\min_w \frac{1}{2} w^T w \\
\text{s.t. } y_i(w^T x_i) \geq 1, \ i = 1, \ldots, n,
\]
Support Vector Machines (hard constraints)

- SVM primal problem (with hard constraints):
 \[
 \min_w \frac{1}{2} w^T w \\
 \text{s.t. } y_i(w^T x_i) \geq 1, \ i = 1, \ldots, n,
 \]

- What if there are outliers?
Support Vector Machines

- Given training data \(x_1, \cdots, x_n \in \mathbb{R}^d \) with labels \(y_i \in \{+1, -1\} \).
- SVM primal problem:

\[
\min_{\mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i (\mathbf{w}^T \mathbf{x}_i) \geq 1 - \xi, \ i = 1, \ldots, n, \\
\xi_i \geq 0
\]
Support Vector Machines

SVM primal problem:

\[
\min_{\mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i (\mathbf{w}^T \mathbf{x}_i) \geq 1 - \xi_i, \ i = 1, \ldots, n, \\
\xi_i \geq 0
\]

Equivalent to

\[
\min_{\mathbf{w}} \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w}}_{\text{L2 regularization}} + C \sum_{i=1}^{n} \underbrace{\max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)}_{\text{hinge loss}}
\]

Non-differentiable when \(y_i \mathbf{w}^T \mathbf{x}_i = 1 \) for some \(i \)
Stochastic Subgradient Method for SVM

A subgradient of $\ell_i(w) = \max(0, 1 - y_i w^T x_i)$:

$$
\begin{cases}
 -y_i x_i & \text{if } 1 - y_i w^T x_i > 0 \\
 0 & \text{if } 1 - y_i w^T x_i < 0 \\
 0 & \text{if } 1 - y_i w^T x_i = 0
\end{cases}
$$

Stochastic Subgradient descent for SVM:

For $t = 1, 2, \ldots$

Randomly pick an index i

If $y_i w^T x_i < 1$, then

$$w \leftarrow (1 - \eta_t)w + \eta_t n C y_i x_i$$

Else (if $y_i w^T x_i \geq 1$):

$$w \leftarrow (1 - \eta_t)w$$
Kernel SVM
Non-linearly separable problems

- What if the data is not linearly separable?

\[x \rightarrow \varphi(x) = \begin{bmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{bmatrix} \]

Solution: map data \(x_i \) to higher dimensional (maybe infinite) feature space \(\varphi(x_i) \), where they are linearly separable.
SVM with nonlinear mapping

- SVM with nonlinear mapping $\varphi(\cdot)$:

$$
\min_{w, \xi} \frac{1}{2} w^T w + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i(w^T \varphi(x_i)) \geq 1 - \xi_i, \xi_i \geq 0, i = 1, \ldots, n,
$$

Hard to solve if $\varphi(\cdot)$ maps to very high or infinite dimensional space.
SVM with nonlinear mapping

- SVM with nonlinear mapping $\varphi(\cdot)$:

$$
\min_{\mathbf{w}, \xi} \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } y_i(\mathbf{w}^T \varphi(\mathbf{x}_i)) \geq 1 - \xi_i, \quad \xi_i \geq 0, \quad i = 1, \ldots, n,
$$

- Hard to solve if $\varphi(\cdot)$ maps to very high or infinite dimensional space.
Support Vector Machines (dual)

- Primal problem:
 \[
 \min_{\mathbf{w}, \xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \\
 \text{s.t. } y_i \mathbf{w}^T \varphi(\mathbf{x}_i) - 1 + \xi_i \geq 0, \text{ and } \xi_i \geq 0 \quad \forall i = 1, \ldots, n
 \]

- Equivalent to:
 \[
 \min_{\mathbf{w}, \xi} \max_{\alpha \geq 0, \beta \geq 0} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i - \sum_i \alpha_i (y_i \mathbf{w}^T \varphi(\mathbf{x}_i) - 1 + \xi_i) - \sum_i \beta_i \xi_i
 \]

- Under certain condition (e.g., slater’s condition), exchanging min, max will not change the optimal solution:
 \[
 \max_{\alpha \geq 0, \beta \geq 0} \min_{\mathbf{w}, \xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i - \sum_i \alpha_i (y_i \mathbf{w}^T \varphi(\mathbf{x}_i) - 1 + \xi_i) - \sum_i \beta_i \xi_i
 \]
Support Vector Machines (dual)

- Reorganize the equation:

$$\begin{align*}
\max_{\alpha \geq 0, \beta \geq 0} \min_{w, \xi} & \frac{1}{2} \|w\|^2 - \sum_i \alpha_i y_i w^T \varphi(x_i) + \sum_i \xi_i (C - \alpha_i - \beta_i) + \sum_i \alpha_i \\
\text{Now, for any given } \alpha, \beta, \text{ the minimizer of } w \text{ will satisfy} & \quad \frac{\partial L}{\partial w} = w - \sum_i \alpha_i y_i \varphi(x_i) = 0 \quad \Rightarrow \quad w^* = \sum_i y_i \alpha_i \varphi(x_i)
\end{align*}$$

Also, we have $C = \alpha_i + \beta_i$, otherwise ξ_i can make the objective function $-\infty$

- Substitute these two equations back we get

$$\begin{align*}
\max_{\alpha \geq 0, \beta \geq 0, C = \alpha + \beta} & -\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j \varphi(x_i)^T \varphi(x_j) + \sum_i \alpha_i
\end{align*}$$
Therefore, we get the following dual problem

\[
\max_{c \geq \alpha \geq 0} \left\{ -\frac{1}{2} \alpha^T Q \alpha + e^T \alpha \right\} := D(\alpha),
\]

where \(Q \) is an \(n \) by \(n \) matrix with \(Q_{ij} = y_i y_j \varphi(x_i)^T \varphi(x_j) \).

Based on the derivations, we know

1. Primal minimum = dual maximum (under slater’s condition)
2. Let \(\alpha^* \) be the dual solution and \(w^* \) be the primal solution, we have

\[
w^* = \sum_i y_i \alpha_i^* \varphi(x_i)
\]

We can solve the dual problem instead of the primal problem.
Do not directly define \(\varphi(\cdot) \)
Kernel Trick

- Do not directly define \(\varphi(\cdot) \)
- Instead, define “kernel”

\[
K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)
\]

This is all we need to know for Kernel SVM!
Do not directly define $\varphi(\cdot)$

Instead, define “kernel”

$$K(x_i, x_j) = \varphi(x_i)^T \varphi(x_j)$$

This is all we need to know for Kernel SVM!

Examples:

- Gaussian kernel: $K(x_i, x_j) = e^{-\gamma \|x_i - x_j\|^2}$
- Polynomial kernel: $K(x_i, x_j) = (\gamma x_i^T x_j + c)^d$

Other kernels for specific problems:

- Graph kernels
 (Vishwanathan et al., “Graph Kernels”, JMLR, 2010)
- Pyramid kernel for image matching
 (Grauman and Darrell, “The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features”. In ICCV, 2005)
- String kernel
Support Vector Machines (dual)

- Training: compute $\alpha = [\alpha_1, \cdots, \alpha_n]$ by solving the quadratic optimization problem:

$$\min_{0 \leq \alpha \leq C} \frac{1}{2} \alpha^T Q \alpha - e^T \alpha$$

where $Q_{ij} = K(x_i, x_j)$
Support Vector Machines (dual)

- Training: compute \(\alpha = [\alpha_1, \cdots, \alpha_n] \) by solving the quadratic optimization problem:

\[
\min_{0 \leq \alpha \leq C} \frac{1}{2} \alpha^T Q \alpha - e^T \alpha
\]

where \(Q_{ij} = K(x_i, x_j) \)

- Prediction: for a test data \(x \),

\[
w^T \varphi(x) = \sum_{i=1}^{n} y_i \alpha_i \varphi(x_i)^T \varphi(x) = \sum_{i=1}^{n} y_i \alpha_i K(x_i, x)
\]
Actually, this “kernel method” works for many different losses.
Kernel Ridge Regression

- Actually, this “kernel method” works for many different losses
- Example: ridge regression

\[
\min_w \frac{1}{2} \|w\|^2 + \frac{1}{2} \sum_{i=1}^n (w^T \varphi(x_i) - y_i)^2
\]

- Dual problem:

\[
\min_{\alpha} \alpha^T Q \alpha + \|\alpha\|^2 - 2\alpha^T y
\]
Challenge for solving kernel SVMs (for dataset with n samples):

- **Space:** $O(n^2)$ for storing the n-by-n kernel matrix (can be reduced in some cases);
- **Time:** $O(n^3)$ for computing the exact solution.

Good packages available: LIBSVM (can be called in scikit-learn)
Challenge for solving kernel SVMs (for dataset with \(n \) samples):

- **Space:** \(O(n^2) \) for storing the \(n \)-by-\(n \) kernel matrix (can be reduced in some cases);
- **Time:** \(O(n^3) \) for computing the exact solution.

Good packages available:

- LIBSVM (can be called in scikit-learn)
Multiclass classification
Multiclass Learning

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $y_i \in \{1, \ldots, L\}$ is the corresponding label
 - Each training data belongs to one category
- Goal: find a function to predict the correct label

$$f(x) \approx y$$
Multi-label Problems

- n data points, L labels, d features
- Input: training data $\{x_i, y_i\}_{i=1}^n$:
 - Each x_i is a d dimensional feature vector
 - Each $y_i \in \{0, 1\}^L$ is a label vector (or $Y_i \in \{1, 2, \ldots, L\}$)
 - Example: $y_i = [0, 0, 1, 0, 0, 1, 1]$ (or $Y_i = \{3, 6, 7\}$)
 - Each training data can belong to multiple categories
- Goal: Given a testing sample x, predict the correct labels

<table>
<thead>
<tr>
<th>Document 1</th>
<th>{Sports, Politics}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document 2</td>
<td>{Science, Politics}</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Document n</td>
<td>{Environment}</td>
</tr>
</tbody>
</table>
Illustration

<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>L</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x_1</td>
<td>0 1 0 0</td>
<td></td>
<td>y_1</td>
</tr>
<tr>
<td></td>
<td>x_2</td>
<td>1 0 0 0</td>
<td></td>
<td>y_2</td>
</tr>
<tr>
<td></td>
<td>x_3</td>
<td>0 1 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_4</td>
<td>0 0 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>x_5</td>
<td>1 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>x_n</td>
<td>0 0 1 0</td>
<td></td>
<td>y_n</td>
</tr>
</tbody>
</table>

- **Multiclass**: each row of L has exact one “1”
- **Multilabel**: each row of L can have multiple ones
Reduction to binary classification

- Many algorithms for binary classification
- Idea: transform multi-class or multi-label problems to multiple binary classification problems
- Two approaches:
 - One versus All (OVA)
 - One versus One (OVO)
One Versus All (OVA)

- Multi-class/multi-label problems with L categories
- Build L different binary classifiers
- For the t-th classifier:
 - Positive samples: all the points in class t ($\{x_i : t \in y_i\}$)
 - Negative samples: all the points not in class t ($\{x_i : t \notin y_i\}$)
 - $f_t(x)$: the decision value for the t-th classifier (larger $f_t \Rightarrow$ higher probability that x in class t)
- Prediction:
 $$f(x) = \arg \max_t f_t(x)$$
- Example: using SVM to train each binary classifier.
Multi-class/multi-label problems with L categories

Build $L(L-1)$ different binary classifiers

For the (s, t)-th classifier:
- Positive samples: all the points in class s ($\{x_i : s \in y_i\}$)
- Negative samples: all the points in class t ($\{x_i : t \in y_i\}$)
- $f_{s,t}(x)$: the decision value for this classifier
 (larger $f_{s,t}(x)$ \Rightarrow label s has higher probability than label t)
- $f_{t,s}(x) = -f_{s,t}(x)$

Prediction:

$$f(x) = \arg \max_s \left(\sum_t f_{s,t}(x) \right)$$

Example: using SVM to train each binary classifier.
OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train $L(L - 1)/2$ classifiers
- Is OVA always faster than OVO?
Prediction accuracy: depends on datasets

Computational time:

- OVA needs to train L classifiers
- OVO needs to train $L(L - 1)/2$ classifiers

Is OVA always faster than OVO?

NO, depends on the time complexity of the binary classifier

- If the binary classifier requires $O(n)$ time for n samples:
 - OVA and OVO have similar time complexity
- If the binary classifier requires $O(n^{1.xx})$ time:
 - OVO is faster than OVA

LIBSVM (kernel SVM solver): OVO
LIBLINEAR (linear SVM solver): OVA
OVA vs OVO

- Prediction accuracy: depends on datasets
- Computational time:
 - OVA needs to train L classifiers
 - OVO needs to train $L(L-1)/2$ classifiers
- Is OVA always faster than OVO?
 - NO, depends on the time complexity of the binary classifier
 - If the binary classifier requires $O(n)$ time for n samples:
 - OVA and OVO have similar time complexity
 - If the binary classifier requires $O(n^{1.xx})$ time:
 - OVO is faster than OVA
- LIBSVM (kernel SVM solver): OVO
- LIBLINEAR (linear SVM solver): OVA
Another approach for multi-class classification

- OVA and OVO: decompose the problem by labels

 But good binary classifiers may not imply good multi-class prediction.

\[
\text{minimize the in-sample error:}
\min_{w_1, \ldots, w_L} \sum_{i=1}^{n} \text{loss}(x_i, y_i) + \lambda \sum_{j=1}^{L} \sum_{i=1}^{L} w_j^T w_j
\]
Another approach for multi-class classification

- OVA and OVO: decompose the problem by labels
 But good binary classifiers may not imply good multi-class prediction.
- Design a **multi-class loss function** and solve a single optimization problem
Another approach for multi-class classification

- OVA and OVO: decompose the problem by labels

 But good binary classifiers may not imply good multi-class prediction.

- Design a multi-class loss function and solve a single optimization problem

- Minimize the in-sample error:

\[
\min_{w_1, \ldots, w_L} \sum_{i=1}^{n} \text{loss}(x_i, y_i) + \lambda \sum_{j=1, \ldots, L} w_j^T w_j
\]
Loss functions for multi-class classification

- Ranking based approaches: directly minimizes the ranking loss:
 - For multiclass classification, the score of y_i should be larger than other labels.
Loss functions for multi-class classification

- Ranking based approaches: directly minimizes the ranking loss:
 - For multiclass classification, the score of y_i should be larger than other labels.

- Soft-max loss:
 - Measure the probability of predicting correct class.
For simplicity, we assume a linear model

Model parameters: w_1, \ldots, w_L

For each data point x, compute the decision value for each label:

$$w_1^T x, \ w_2^T x, \ldots, \ w_L^T x$$

Prediction:

$$y = \arg \max_t w_t^T x$$

For training data x_i, y_i is the true label, so we want

$$y_i \approx \arg \max_t w_t^T x_i \quad \forall i$$
Softmax

- The predicted score for each class:
 \[w_1^T x_i, \ w_2^T x_i, \ldots \]

- Loss for the \(i \)-th data is defined by
 \[
 - \log \left(\frac{e^{w_{y_i}^T x_i}}{\sum_j e^{w_j^T x_i}} \right)
 \]
 (Probability of choosing the correct label)

- Solve a single optimization problem
 \[
 \min_{w_1, \ldots, w_L} \sum_{i=1}^{n} - \log \left(\frac{e^{w_{y_i}^T x_i}}{\sum_j e^{w_j^T x_i}} \right) + \lambda \sum_j w_j^T w_j
 \]
Weston-Watkins Formulation

- Proposed in Weston and Watkins, “Multi-class support vector machines”. In ESANN, 1999.

\[
\min_{\{w_t\},\{\xi_t^i\}} \frac{1}{2} \sum_{t=1}^{L} \|w_t\|^2 + C \sum_{i=1}^{n} \sum_{t=1}^{L} \xi_t^i \\
\text{s.t. } w_{y_i}^T x_i - w_t^T x_i \geq 1 - \xi_t^i, \quad \xi_t^i \geq 0 \quad \forall t \neq y_i, \forall i = 1, \ldots, n
\]

- If point \(i \) is in class \(y_i \), for any other labels \((t \neq y_i)\), we want
 \[
w_{y_i}^T x_i - w_t^T x_i \geq 1
 \]
 or we pay a penalty \(\xi_t^i \)

- Prediction:
 \[
f(x) = \arg \max_t w_t^T x_i
 \]

\[
\min_{\{w_t\}, \{\xi_i\}} \frac{1}{2} \sum_{t=1}^{L} \|w_t\|^2 + C \sum_{i=1}^{n} \xi_i \\
\text{s.t. } w_{y_i}^T x_i - w_t^T x_i \geq 1 - \xi_i, \ \forall t \neq y_i, \ \forall i = 1, \ldots, n \\
\xi_i \geq 0 \ \forall i = 1, \ldots, n
\]

If point \(i\) is in class \(y_i\), for any other labels \((t \neq y_i)\), we want

\[
w_{y_i}^T x_i - w_t^T x_i \geq 1
\]

For each point \(i\), we only pay the largest penalty

Prediction:

\[
f(x) = \arg \max_t w_t^T x_i
\]
Conclusions

- Next class: Decision tree, gradient boosting, random forest

Questions?