Splus/R Introduction

You can quit Splus by typing `q()`

On Unix, Splus can be accessed by typing `splus` or `Splus5 –e` for the newer version. The –e flag will allow you to use emacs commands to scroll and move through text.

The **assignment operator** in Splus is `<-`

As an example, if we wanted to assign the variable `x` the value of 2

We would type: `> x<-2`

Splus will not write to the screen unless prompted to do so. Typing `>x` will prompt Splus to tell you that `x` has been assigned the value 2.

Splus is case sensitive, so the variable `X` is different from the `x` we just assigned.

Programs are written usually as `.q` or `.r` files. In Splus this is not important what you actually name them.

To run them, you will need to type `>source("filename")`

To access help documents about specific Splus functions, one can type `>help(function)` or `?function`

To find functions, you can type `>help.start()`

Entering vectors:
`>a<-c(1, 2, 3, 4, 5, 6, 7, 8, 9)`

will assign the variable `a` to a vector of length 9. This could also be accomplished by typing `a<-c(1:9)`

There are many shortcuts like this in Splus. The `c` stands for concatenate.

`>A<-rbind(a,a)` would result in a 2 by 9 element vector where both rows are `a`. There is also a command `cbind`, which would give us the transpose of `A` from our example. `R` is for row, `c` is for column.

To call an element of the matrix, one can type `>A[i,j]` where `i` and `j` are appropriate integers.

For a vector, one need only enter one argument.

Matrix operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
</tr>
<tr>
<td><code>%*%</code></td>
<td>Multiplication</td>
</tr>
<tr>
<td><code>t()</code></td>
<td>Transpose</td>
</tr>
<tr>
<td><code>%/%</code></td>
<td>Division</td>
</tr>
</tbody>
</table>

To take the inverse of a matrix `A` in Splus, we can use the `>solve(matrix)` command.

The default in Splus is to do element-wise operations. If we wanted to multiply the two arrays of the same size element-wise, say `A` and `B`, we can enter `>A*B`

Relations:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code><</code></td>
<td>Less than</td>
</tr>
<tr>
<td><code>></code></td>
<td>Greater than</td>
</tr>
<tr>
<td><code><=</code></td>
<td>Less than or equal</td>
</tr>
<tr>
<td><code>>=</code></td>
<td>Greater than or equal</td>
</tr>
<tr>
<td><code>==</code></td>
<td>Equal</td>
</tr>
<tr>
<td><code>!=</code></td>
<td>not equal.</td>
</tr>
</tbody>
</table>

Logical Operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&</code></td>
<td>and</td>
</tr>
<tr>
<td>`</td>
<td>`</td>
</tr>
<tr>
<td><code>~</code></td>
<td>not.</td>
</tr>
</tbody>
</table>

These are useful when using loops.

Loops that require statements of more than one line must be enclosed by brackets.

For, while, and if loops are the most common types of loops.
>x<-rep(0,10) \hspace{1cm} \text{(initialize array x as a vector of length 10 with entries 0)}
>for (i in 1:10)
> { \hspace{1cm} \text{would result in a vector of powers of 2, namely 2 4 8 16…We did not need brackets here since our statement was only one line, but they were included for illustrative purposes.}}
>x[i]<-2^i;
>
would result in a vector of powers of 2, namely 2 4 8 16…We did not need brackets here since our statement was only one line, but they were included for illustrative purposes.

while loops take on the form
>while relation
> statement

The following will compute the smallest nonnegative integer n such that $2^n > a$, where a is some fixed constant.
>n<-0;
>while (2^n<a)
> n<-n+1;
>n

As an example of an if statement, the following will check whether a given integer g is even. If it is it will add one to its value.
>if \hspace{0.1cm} ((g\%\%2)==0) \hspace{0.1cm} \text{(modulus operator)}
> g<-g+1;

Sub-matrices: As an example, say we wanted to remove the upper left two by two sub-matrix from a matrix X, and name it Y. The command would be
>Y<-X[1:2, 1:2]

If we wanted to assign the variable z the first column of X, we would type
>z<-X[1,]

Without specific arguments after the comma, Splus will take all the entries in the respective row or column.

Random Arrays:
The Splus command `runif(j)` will result in an array of random numbers between 0 and 1 of length j. If we need a vector of random numbers between 1 and 3, we could enter `runif(j,1,3)`.

Graphs: Commands such as plot, scatter, and hist are available to graph data. More information about these commands can be found using the help command. If you are using Splus on a Unix machine, you will need to open a graphics window before graphing. This is accomplished by the command `motif()`

Saving Sessions: Splus automatically saves your session, meaning all the variables you have created.

Recording Sessions: The command `sink name` will record the session into the file `name`. Typing `sink` will end the record.

Reading Data: The function `read.table(file_name, header=T)` can be used to read data into Splus. If your file does not include a header (variable names), then you would want to enter header=F as the second argument. To find out what the names of your variables are, you can type `names(array)` To use the columns of the array separately, you can use `attach(array)` As an example, say we have an array named data that we have read in. data contains variables V1 and V2. If you wanted to plot a histogram of V1, you can either first attach the data frame, by typing `attach(data)` followed by `hist(v1)` or alternatively you can simply type `hist(data$V1)` without using the attach command. The dollar sign lets us use various parts of a data frame. This especially comes in handy when we are using some of the statistical functions such as regression.

Useful Commands:
The command `ls()` will list all of the variables in the current work space

Useful References:
There are numerous Splus primers available on the world wide web. The site http://www.ci.tuwien.ac.at/R/ is recommended.