Online Supplement to
“Testing for stationarity of functional time series
in the frequency domain”∗

Alexander Aue† Anne van Delft‡

October 5, 2017

Abstract

This supplement contains additional technical material necessary to complete the proofs of theorems of the main paper Aue & van Delft (2016). Section S1 contains the proofs of several auxiliary lemmas stated in Appendix A of the main paper. Section S2 contains results on finding bounds for the denominator of the test statistic. Sections S3 deals with convergence of the finite-dimensional distributions. Section S4 establishes the asymptotic covariance structure of the test under the alternative of local stationarity.

Keywords: Frequency domain methods, Functional data analysis, Locally stationary processes, Spectral analysis

S1 Properties of functional cumulants under local stationarity

Lemma S1.1. Let Assumption 4.3 be satisfied and \(c_{u; t_1, \ldots, t_{k-1}} \) as given in (4.6). Then,

\[
\| \text{cum}(X_{t_1}^{(T)}, \ldots, X_{t_k}^{(T)}) - c_{t_1/T; t_1, \ldots, t_k, t_{k-1}} \|_2 \\
\leq \left(\frac{k}{T} + \sum_{j=1}^{k-1} \frac{|t_j - t_k|}{T} \right) \| K_{k; t_1, \ldots, t_k; k-1, t_k} \|_2.
\]

Proof of Lemma A.2. By linearity of the cumulant operation, consecutively taking differences leads, by equation (4.4) of the main paper and the triangle inequality, to

\[
\| \text{cum}(X_{t_1}^{(T)}, \ldots, X_{t_k}^{(T)}) - \text{cum}(X_{t_1}^{(t_1/T)}, \ldots, X_{t_k}^{(t_k/T)}) \|_2 \\
\leq K \frac{k}{T} \| K_{k; t_1, \ldots, t_k, t_k} \|_2.
\]

∗AA was partially supported by NSF grants DMS 1305858 and DMS 1407530. AvD was partially supported by Maastricht University, the contract “Projet d’Actions de Recherche Concertées” No. 12/17-045 of the “Communauté française de Belgique” and by the Collaborative Research Center “Statistical modeling of nonlinear dynamic processes” (SFB 823, Project A1, C1, A7) of the German Research Foundation (DFG).

†Department of Statistics, University of California, Davis, CA 95616, USA, email: aaue@ucdavis.edu

‡Ruhr-Universität Bochum, Fakultät für Mathematik, 44780 Bochum, Germany, email: Anne.vanDelft@rub.de
using part (i) of Assumption 4.3. By (4.4),
\[X_{t_j}^{(t_j/T)} - X_{t_j}^{(t_k/T)} = \frac{(t_j - t_k)}{T} Y_{t_j}^{(t_j/T, t_k/T)}. \]
(S1.1)
Similarly,
\[\left\| \text{cum}(X_{t_1}^{(t_1/T)}, \ldots, X_{t_k}^{(t_k/T)}) - e_{t_1/T; t_1, \ldots, t_{k-1} - t_k} \right\|_2 \]
\[\leq \sum_{j=1}^{k-1} \frac{|t_j - t_k|}{T} \left\| \kappa_{k; t_1, \ldots, t_{k-1} - t_k} \right\|_2, \]
which follows from part (iii) of Assumption 4.3 Minkowski’s inequality then implies the lemma.

Lemma S1.2. Consider a sequence of functional processes \((X_t^{(T)}: t \leq T, T \in \mathbb{N})\) satisfying Assumption 4.3 with \(k = 2\) and \(\ell = 2\). Then, this triangular array uniquely characterizes the time-varying local spectral density operator
\[\mathcal{F}_{u,\omega} = \frac{1}{2\pi} \sum_{h \in \mathbb{Z}} c_{u,h} e^{-i\omega h}, \]
(S1.2)
which belongs to \(S_2(H)\). Its kernel satisfies
\begin{enumerate}
 \item \(\sup_{u,\omega} \left\| \frac{\partial^i}{\partial u^i} \mathcal{F}_{u,\omega} \right\|_2 < \infty\) for \(i = 1, 2\),
 \item \(\sup_{u,\omega} \left\| \frac{\partial^i}{\partial \omega^i} \mathcal{F}_{u,\omega} \right\|_2 < \infty\) for \(i = 1, 2\),
 \item \(\sup_{u,\omega} \left\| \frac{\partial^2}{\partial \omega \partial u} \mathcal{F}_{u,\omega} \right\|_2 < \infty\).
\end{enumerate}

Proof of Lemma A.3. Using Lemma A.2, it is straightforward to show that \((X_t^{(T)}: t \leq T, T \in \mathbb{N})\) uniquely determines the time-varying spectral density operator, that is,
\[\int_{-\pi}^{\pi} \left\| \mathcal{F}_{u,\omega}^{(T)} - \mathcal{F}_{u,\omega} \right\|_2^2 d\omega = o(1) \quad (T \to \infty). \]
(S1.3)

Proof of Lemma A.4. The first line of (A.4) follows on replacing the cumulants \(\text{cum}(X_{t_1}^{(T)}, \ldots, X_{t_{k-1}}^{(T)}, X_{t_k}^{(T)})\) with \(e_{t_k/T; t_1 - t_k, \ldots, t_{k-1} - t_k}\) and Lemma A.2. The second line because the discretization of the integral is an operation of order \(O(T^{-2})\).

By Assumption 4.3 (iv), the kernel of \(u \mapsto \frac{\partial}{\partial u} \mathcal{F}_{u; \omega_1, \ldots, \omega_{k-1}}\) satisfies
\[\left\| \sup_u \frac{\partial}{\partial u} \mathcal{F}_{u; \omega_1, \ldots, \omega_{k-1}} \right\|_2 \leq \frac{1}{(2\pi)^{k-1}} \sum_{t_1, \ldots, t_k} \left\| \kappa_{k; t_1 - t_k, \ldots, t_{k-1} - t_k} \right\|_2 < \infty. \]
The dominated convergence theorem therefore yields
\[
\sup_{u,\omega_1,\ldots,\omega_{k-1}} \left\| \frac{\partial}{\partial u} f_{u,\omega_1,\ldots,\omega_{k-1}} \right\|_2 < \infty. \tag{S1.4}
\]

Finally, integration by parts for a periodic function in \(L^2([0, 1]^k)\) with existing \(n\)-th directional derivative in \(u\), yields
\[
\left\| \tilde{f}_{k;\omega_{j_1},\ldots,\omega_{j_{k-1}}} \right\|_2^2 \\
= \int_{[0,1]^k} \left[\frac{\gamma_{u}^{n-1}}{\gamma_{u}^{n-1} f_{u;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) e^{-is2\pi u}} - \int_0^1 (\hat{f}_u(\omega_{j_1},\ldots,\omega_{j_{k-1}}) \tau) e^{i2\pi u} \hat{f}_{u;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) d\tau \right]^2 d\tau \\
= \int_{[0,1]^{k+2}} \frac{1}{(2\pi s)^{2n}} e^{i2\pi s(u-v)} \left(\frac{\partial^2}{\partial u^2} f_{u;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) \tau \right) \left(\frac{\partial^2}{\partial v^2} f_{v;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) \right) d\tau d\tau d\tau
\]
\[
\leq \frac{1}{(2\pi s)^{2n}} \int_{[0,1]^{k+2}} \frac{\partial^2}{\partial u^2} f_{u;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) \left(\frac{\partial^2}{\partial v^2} f_{v;\omega_{j_1},\ldots,\omega_{j_{k-1}}} (\tau) \right) d\tau d\tau d\tau
\]
\[
\leq \frac{1}{(2\pi s)^{2n}} \left\| \frac{\partial^2}{\partial u^2} f_{u;\omega_{j_1},\ldots,\omega_{j_{k-1}}} \right\|_2^2 < \infty,
\]

where the Cauchy–Schwarz inequality was applied in the second-to-last equality. The interchange of integrals is justified by Fubini’s theorem. Thus,
\[
\sup_{\omega_{j_1},\ldots,\omega_{j_{k-1}}} \left\| \tilde{f}_{k;\omega_{j_1},\ldots,\omega_{j_{k-1}}} \right\|_2 \leq \frac{1}{(2\pi s)^{2n}} \sup_{u,\omega_1,\ldots,\omega_n} \left\| \frac{\gamma_n}{\gamma_n} f_{u;\omega_1,\ldots,\omega_n} \right\|_2 \left\| |s|^{-n} \cdot \right. \tag{S1.5}
\]

and (A.6) follows from Assumption 4.3 (iv).

Proof of Corollary A.1. For completeness, we elaborate on part (ii) of the corollary. Note that
\[
\left\| \tilde{F}_{0;\omega} \right\|_2 \leq \sup_{\omega, u} \left\| F_{u;\omega} \right\|_2 < \sum_h \left\| \kappa_{2,h} \right\|_2 < \infty.
\]

The \(p\)-harmonic series for \(p = 2\) then yields
\[
\sup_{\omega} \sum_{s \in \mathbb{Z}} \left\| \tilde{F}_{s;\omega} \right\|_2 \leq \sum_h \left\| \kappa_{2,h} \right\|_2 \left(1 + \frac{1}{(2\pi)^4} \pi^2 \right) < \infty, \tag{S1.6}
\]

where the constant \((2\pi)^{-4}\) follows from (S1.5).

S2 Error bound for the denominator of the test statistic

A bound needs to be obtained on the error resulting from the replacement of the unknown spectral operators with consistent estimators. It will be sufficient to consider a bound on
\[
\sqrt{T} | \gamma_h(T)(l_1, l_2) - \hat{\gamma}_h(T)(l_1, l_2) |
\]
for all $l_1, l_2 \in \mathbb{N}$, where $\gamma(T)$ is defined in equation (3.1) of the main paper. Consider the function $g(x) = x^{-1/2}$, $x > 0$, and notice that

$$
\gamma_h^{(T)}(l_1, l_2) - \hat{\gamma}_h^{(T)}(l_1, l_2) = \frac{1}{T} \sum_{j=1}^{T} D_{\omega_j}^{(l_1)} D_{-\omega_j + h}^{(l_2)} \left[g(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)}) - g(\hat{\mathcal{F}}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)}) \right].
$$

Given the assumption $\inf_{\omega} \langle \mathcal{F}_{\omega}(\psi), \psi \rangle > 0$ for all $\psi \in H$ is satisfied, continuity of the inner product implies that for fixed l_1, l_2 the mean value theorem may be applied to find

$$
\gamma_h^{(T)}(l_1, l_2) - \hat{\gamma}_h^{(T)}(l_1, l_2) = \frac{1}{T} \sum_{j=1}^{T} D_{\omega_j}^{(l_1)} D_{-\omega_j + h}^{(l_2)} \left[\frac{\partial g(x)}{\partial x} \bigg|_{x=\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)}} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} - \hat{\mathcal{F}}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)} \right) \right],
$$

where $\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)}$ lies in between $\mathcal{F}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)}$ and $\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)}$. Because of uniform convergence of $\hat{\mathcal{F}}_{\omega_j} \in S_2(H)$ with respect to ω, it follows that

$$
\sqrt{T} |\gamma_h^{(T)}(l_1, l_2) - \hat{\gamma}_h^{(T)}(l_1, l_2)| = O_p(1) \left| \frac{1}{T} \sum_{j=1}^{T} D_{\omega_j}^{(l_1)} D_{-\omega_j + h}^{(l_2)} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right)^{3/2} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)} \right) \right|.
$$

(S2.1)

With these preliminary results at hand, the first main theorems can be verified.

Proof of Theorems 4.1 and 4.5. In order to prove both theorems, partition (S2.1) as follows

$$
J_1(l_1, l_2) = \frac{1}{\sqrt{T}} \sum_{j=1}^{T} D_{\omega_j}^{(l_1)} D_{-\omega_j + h}^{(l_2)} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right)^{3/2} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)} \right),
$$

(S2.2)

$$
J_2(l_1, l_2) = \frac{1}{\sqrt{T}} \sum_{j=1}^{T} D_{\omega_j}^{(l_1)} D_{-\omega_j + h}^{(l_2)} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right)^{3/2} \left(\hat{\mathcal{F}}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right),
$$

(S2.3)

$$
J_3(l_1, l_2) = \frac{1}{\sqrt{T}} \sum_{j=1}^{T} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right)^{3/2} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)} \right),
$$

(S2.4)

$$
J_4(l_1, l_2) = \frac{1}{\sqrt{T}} \sum_{j=1}^{T} \left(\mathcal{F}_{\omega_j}^{(l_1)}, \mathcal{F}_{\omega_j + h}^{(l_2)} \right)^{3/2} \left(\hat{\mathcal{F}}_{\omega_j}^{(l_1)}, \hat{\mathcal{F}}_{\omega_j + h}^{(l_2)} \right).
$$

(S2.5)

The proof of both theorems are based on Corollary S2.1 and Lemmas S2.1-S2.4 below. These results together with an application of the Cauchy–Schwarz inequality yield

(i) $|J_1| = O_p \left(\frac{1}{\sqrt{T}} + b^2 \right),$

(ii) $|J_2| = \begin{cases}
O_p \left(\frac{1}{\sqrt{T}} + b^2 \right) & \text{under Assumption 4.1,} \\
O_p \left(\frac{1}{\sqrt{T}} + b^2 \right) & \text{under Assumption 4.3,}
\end{cases}$
Expanding the expectation in terms of cumulants, one obtains the structure

\[
\begin{align*}
(iii) \quad |J_3| &= \begin{cases}
O_b \left(\frac{1}{\sqrt{bT}} \right) & \text{under Assumption 4.1}, \\
O_b \left(\frac{1}{\sqrt{bT}} \right) & \text{under Assumption 4.3},
\end{cases} \\
(iv) \quad |J_4| &= \begin{cases}
O \left(b^2 + \frac{1}{bT} \right) & \text{under Assumption 4.1}, \\
O \left(\sqrt{Tb^2} + \frac{1}{b\sqrt{T}} \right) & \text{under Assumption 4.3}.
\end{cases}
\end{align*}
\]

Minkowski’s Inequality then gives the result.

Corollary S2.1. Under Assumption 4.1

\[
\mathbb{E} \left[\left\| \hat{T}_\omega^{(T)} - T_\omega \right\|^2 \right] = O \left(\frac{1}{bT} + b^4 \right) \quad (T \to \infty),
\] (S2.6)

while, under Assumption 4.3,

\[
\mathbb{E} \left[\left\| \hat{T}_\omega^{(T)} - G_\omega \right\|^2 \right] = O \left(\frac{1}{bT} + b^4 \right) \quad (T \to \infty).
\] (S2.7)

Proof. See Panaretos & Tavakoli (2013, Theorem 3.6) and Theorem 4.4, respectively.

Lemma S2.1. Let \((g_j^{(l_1,l_2)} : j \in \mathbb{Z}) \) be a bounded sequence in \(C \) for all \(l_1, l_2 \in \mathbb{N} \) such that \(\inf_j g_j^{(l_1,l_2)} > 0 \).

Under Assumption 4.1 and under Assumption 4.3,

\[
\mathbb{E} \left[\left\| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} (D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)}]) \right\|^2 \right] = O(1).
\]

Proof. Observe that

\[
\begin{align*}
\mathbb{E} \left[\left\| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} (D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)}]) \right\|^2 \right] & = \mathbb{E} \left[\left\| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} (D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} E_{\omega_j}^{(l_2)}]) \right\|^2 \right] \\
& = \frac{1}{T} \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1,j_2=1}^{T} g_j^{(l_1,l_2)} \sum_{j_1,j_2=1}^{T} K \left(\frac{\omega_j'}{b} \right) K \left(\frac{\omega_j''}{b} \right) \mathbb{E} \left[\left\{ (D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)}]) \right\} \right] \\
& \quad \times D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)} \left\{ (D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)}]) \right\} \\
& \quad \times D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)} \left\{ (D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)} - \mathbb{E} [D_{\omega_j}^{(l_1)} D_{\omega_j}^{(l_2)}]) \right\}.
\end{align*}
\]

Expanding the expectation in terms of cumulants, one obtains the structure

\[
\]
\[+ \text{cum}(X, Y)\text{cum}(W, Z) + \text{cum}(X, W)\text{cum}(Y, Z) + \text{cum}(X, Z)\text{cum}(Y, W), \]

where \(X, Y, W, Z\) are products of random elements of \(H\). Hence, by the product theorem for cumulants, only those products of cumulants have to be considered that lead to indecomposable partitions of the matrix below or of any sub-matrix (with the same column structure) with the exception that \((Y)\) or \((Z)\) is allowed to be decomposable but not within the same partition.

Lemma A.1 of the main paper, a cumulant of order \(t\) will be restricted to partitions of this form. As mentioned above, partitions in which a term contains an element of the sets \(X, Y, W, Z\) or of any sub-matrix (with the same column structure) with the exception that \(m_i \geq 2\). By Lemma A.1 of the main paper, a cumulant of order \(k\) upscaled by order \(T\) will be of order \(O(T^{-k/2+1})\) under \(H_0\) and \(O(T^{-k/2+2})\) under the alternative. This directly implies that only terms of the following form have to be investigated:

\[
\frac{1}{T} \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1,j_2=1}^{T} \sum_{j_1',j_2'=1}^{T} K\left(\frac{\omega_{j_1}}{b} \right) K\left(\frac{\omega_{j_2}}{b} \right) \text{cum}_1\text{cum}_2\text{cum}_2, \quad (S2.9)
\]

\[
\frac{1}{T} \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1,j_2=1}^{T} \sum_{j_1',j_2'=1}^{T} K\left(\frac{\omega_{j_1}}{b} \right) K\left(\frac{\omega_{j_2}}{b} \right) \text{cum}_3\text{cum}_3\text{cum}_2, \quad (S2.10)
\]

\[
\frac{1}{T} \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1,j_2=1}^{T} \sum_{j_1',j_2'=1}^{T} K\left(\frac{\omega_{j_1}}{b} \right) K\left(\frac{\omega_{j_2}}{b} \right) \text{cum}_2\text{cum}_2\text{cum}_2, \quad (S2.11)
\]

However, for a fixed partition \(P = \{P_1, \ldots, P_M\}\),

\[
T \prod_{j=1}^{M} O\left(\frac{1}{T^{m_j/2-1}} \right),
\]

from which it is also clear that (S2.9) and (S2.10) are at most going to be of order \(O(1)\) under the alternative and of lower order under \(H_0\). The term (S2.11) could possibly of order \(O(T)\). Further analysis can therefore be restricted to partitions of this form. As mentioned above, partitions in which a term contains an element of the sets \(D_{\omega_{j_1}}\) or \(D_{-\omega_{j_1}}\) and of \(D_{\omega_{j_2}}\) or \(D_{-\omega_{j_2}}\) must contain at least one element from another set. It follows that partitions in which \(m_i = 2\) for all \(i \in \{1, \ldots, M\}\), without any restrictions on the summations, are decomposable. We find the term of highest order is thus of the type

\[
\frac{1}{T} \sum_{j_1,j_2=1}^{T} g_{j_1,j_2}^\prime \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1',j_2'=1}^{T} K\left(\frac{\omega_{j_1}}{b} \right) K\left(\frac{\omega_{j_2}}{b} \right) \text{cum}(D_{-\omega_{j_1}+h}, D_{\omega_{j_2}+h}) \text{cum}(D_{\omega_{j_1}+h}, D_{\omega_{j_2}+h})
\]
Then, notice that
\[
\sup_j |g_j^{(l_1,l_2)}| < \infty \quad \text{for all } l_1, l_2 \in \mathbb{N}.
\]

Lemma S2.2. Let \((g_j^{(l_1,l_2)} : j \in \mathbb{Z})\) be a bounded sequence in \(\mathbb{C}\) for all \(l_1, l_2 \in \mathbb{N}\) such that \(\inf_{l_1, l_2} g_j^{(l_1,l_2)} > 0\). Then,
\[
E \left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} \left(D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)} - \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}] \right) \right|^2 \right] = \begin{cases} O \left(\frac{1}{T} \right) & \text{under } H_0, \\ O(1) & \text{under } H_1. \end{cases}
\]

Proof. Notice that
\[
E \left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} \left(D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)} - \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}] \right) \right|^2 \right] = \frac{1}{T} \sum_{j_1, j_2 = 1}^{T} \left(g_{j_1,j_2}^{(l_1,l_2)} \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}] - \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}] \right) + \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}] \mathbb{E}[D_{\omega_j}^{(l_1)} D_{-\omega_j + \omega_1 + h}^{(l_2)}].
\]

Under the null, this is therefore of the order \(O(T/T^2 + 1/T) = O(1/T)\), where is uniform over \(\omega\). Under the alternative, by Corollary A.1 of the main paper, the last term can be estimated by
\[
\frac{1}{T} \sum_{j_1, j_2 = 1}^{T} g_{j_1,j_2}^{(l_1,l_2)} \left(\frac{1}{T} G_{\omega_j}^{(l_1,l_2,l_1,l_2)} + \tilde{g}_{\omega_j}^{(l_1,l_2,l_1)} \right) \leq \sup_j |g_j^{(l_1,l_2)}| \frac{1}{T} \sum_{j_1, j_2 = 1}^{T} \left(\frac{1}{T} G_{\omega_j}^{(l_1,l_2,l_1,l_2)} + \tilde{g}_{\omega_j}^{(l_1,l_2,l_1)} \right) \leq \sup_j |g_j^{(l_1,l_2)}| \left(\sum_{l_1, l_2, l_3} \| \kappa_{l_1,l_2,l_3} \|_2 \| \psi_{l_1} \|_2^2 \| \psi_{l_2} \|_2^2 + C \sum_{l} \| \kappa_{l} \|_2 \right) = O(1),
\]
for some constant \(C\). \(\square\)
Lemma S2.3. Let \((g_{j}^{(l_1,l_2)}: j \in \mathbb{Z})\) be a bounded sequence in \(\mathbb{C}\) for all \(l_1, l_2 \in \mathbb{N}\) such that \(\inf_{l_1,l_2} g_{j}^{(l_1,l_2)} > 0\). Then,

\[
\mathbb{E}\left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_{j}^{(l_1,l_2)} \mathbb{E}\left[D_{\omega_j}^{(l_1)} D_{\omega_j^+ h}^{(l_2)} \left(\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} \right) - \mathbb{E}\left[\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} \right] \right]\right]\]

\[
= \begin{cases}
O\left(\frac{1}{\sqrt{T}}\right) & \text{under Assumption 4.1.} \\
O\left(\frac{1}{T}\right) & \text{under Assumption 4.3.}
\end{cases}
\]

Proof. Observe first that by the Cauchy–Schwarz inequality,

\[
\mathbb{E}[|J_3(l_1, l_2)|] \leq \sup_j |g_{j}^{(l_1,l_2)}| \mathbb{E}[D_{\omega_j}^{(l_1)} D_{\omega_j^+ h}^{(l_2)}]
\times \left(\mathbb{E}\left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} \left(\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} - \mathbb{E}\left[\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} \right] \right)^2 \right] \right)^{1/2},
\]

which follows because the term over which the supremum is taken is deterministic. In particular, it is of order \(O(T^{-1})\) under the null and \(O(h^{-2})\) under the alternative. To find a bound on

\[
\mathbb{E}\left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} \left(\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} - \mathbb{E}\left[\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} \right] \right)^2 \right]\],
\]

we proceed similarly as in the proof of Lemma S2.1. Observe that,

\[
\mathbb{E}\left[\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} \left(\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} - \mathbb{E}\left[\hat{T}_{\omega_j}^{(l_1,l_1)} \hat{T}_{\omega_j^+ h}^{(l_2,l_2)} \right] \right)^2 \right]\]

\[= \frac{1}{T} \left(\frac{2\pi}{b T} \right)^2 \sum_{j_1,j_2=1}^{T} \sum_{j_1',j_2'=1}^{T} \prod_{i=1}^{4} K\left(\frac{\omega_{j_i}}{b} \right) \times \mathbb{E}\left[D_{\omega_{j_1,j_1'}}^{(l_1)} D_{\omega_{j_2,j_2'}}^{(l_2)} D_{\omega_{j_1+h-j_1}}^{(l_2)} D_{\omega_{j_2+h-j_2}}^{(l_2)} - \mathbb{E}[D_{\omega_{j_1,j_1'}}^{(l_1)} D_{\omega_{j_2,j_2'}}^{(l_2)} D_{\omega_{j_1+h-j_1}}^{(l_2)} D_{\omega_{j_2+h-j_2}}^{(l_2)}]\right] \times \left(D_{\omega_{j_3,j_3'}}^{(l_1)} D_{\omega_{j_4,j_4'}}^{(l_2)} D_{\omega_{j_3-j_3}}^{(l_2)} D_{\omega_{j_4-j_4}}^{(l_2)} - \mathbb{E}[D_{\omega_{j_3,j_3'}}^{(l_1)} D_{\omega_{j_4,j_4'}}^{(l_2)} D_{\omega_{j_3-j_3}}^{(l_2)} D_{\omega_{j_4-j_4}}^{(l_2)}]\right).
\]

Write

\[
\mathbb{E}[(X - E X)][(Y - E Y)] = \text{cum}(X,Y) - \text{cum}(X)\text{cum}(Y)
\]

for products \(X, W\) of random elements of \(H\). When expanding this in terms of cumulants, we only have to consider those products of cumulants that lead to indecomposable partitions of the rows of the matrix below

\[
\begin{pmatrix}
(X) & D_{\omega_{j_1,j_1'}}^{(l_1)} & D_{\omega_{j_1,j_1'}}^{(l_1)} & D_{\omega_{j_1+h-j_1}}^{(l_2)} & D_{\omega_{j_2+h-j_2}}^{(l_2)} \\
(Y) & D_{\omega_{j_3,j_3'}}^{(l_1)} & D_{\omega_{j_3,j_3'}}^{(l_1)} & D_{\omega_{j_3-j_3}}^{(l_2)} & D_{\omega_{j_4-j_4}}^{(l_2)}
\end{pmatrix}
\]

(S2.12)
In order to satisfy this, in every partition there must be at least one term that contains both an element of X and of Y. A similar reasoning as in the proof of S2.1 indicates we will only have to consider partitions where $2 \leq m_i \leq 4$ for $i = 1, \ldots, M$. In case of stationarity we only have to consider those with $m_i = 2$ for all $i = 1, \ldots, M$. In both cases at least one restriction in terms of the summation must occur in order for the partition to be decomposable. In particular, it can be verified that the partition of highest order is of the form

$$
\frac{1}{T} \sum_{j_1, j_2 = 1}^{T} \left(\frac{2\pi}{bT} \right)^4 \sum_{j_1', j_2', j_1''}^{T} \prod_{i=1}^{4} K \left(\frac{\omega_{j_i}'}{b} \right) \text{cum}(D^{(l_2)}_{\omega_{j_1'-j_2-h}}, D^{(l_2)}_{\omega_{j_2-j_1'-h}}, D^{(l_2)}_{\omega_{j_1+h-j_2}}, D^{(l_2)}_{\omega_{j_2-h-j_1}})
\times \text{cum}(D^{(l_1)}_{\omega_{j_1'-j_2}}, D^{(l_1)}_{\omega_{j_2'-j_1}}) \text{cum}(D^{(l_1)}_{\omega_{j_1'-j_2}}, D^{(l_1)}_{\omega_{j_2'-j_1}})
\leq C \frac{1}{bT} \sup_{\omega} |C_{\omega}^{2(l_2,l_2)}| \frac{1}{T} \sum_{j_1, j_2 = 1}^{T} \left[\mathcal{F}^{(l_1,l_1)}_{j_1-j_2, \omega_{j_1}, \omega_{j_1'}} + O \left(\frac{1}{T} \right) \right] \left[\mathcal{F}^{(l_1,l_1)}_{j_2-j_1, \omega_{j_1}, \omega_{j_1'}} + O \left(\frac{1}{T} \right) \right] = O \left(\frac{1}{bT} \right),
$$

since $\| \mathcal{F}_{j_1-j_2, \omega_{j_1}, \omega_{j_1'}} \|_2 \leq C |j_1 - j_2| + j_1'^2$ and $\| K(x/b) \|_\infty = O(1)$, where the bandwidth leads to only bT nonzero terms in the summation over j_1. The same bound can be shown to hold under stationarity. As before, the error is uniform with respect to ω which follows again from Corollary A.1 of the main paper. □

Lemma S2.4. Let $(g_j^{(l_1,l_2)} : j \in \mathbb{Z})$ be a bounded sequence in \mathbb{C} for all $l_1, l_2 \in \mathbb{N}$ such that $\inf_{l_1, l_2} g_j^{(l_1,l_2)} > 0$. Then,

$$
\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} \mathbb{E}[D^{(l_1)}_{\omega_j} D^{(l_2)}_{\omega_{j+h}}] \left(\mathbb{E}[\mathcal{F}^{(l_1,l_1)}_{\omega_j} \mathcal{F}^{(l_2,l_2)}_{\omega_{j+h}}] - \mathcal{F}^{(l_1,l_1)}_{\omega_j} \mathcal{F}^{(l_2,l_2)}_{\omega_{j+h}} \right) \right| = \begin{cases}
O \left(\frac{1}{\sqrt{T}} \right) & \text{under Assumption 4.1.} \\
O \left(\frac{\sqrt{bT^2} + 1}{bT} \right) & \text{under Assumption 4.3.}
\end{cases}
$$

Proof. First note that

$$
\left| \frac{1}{\sqrt{T}} \sum_{j=1}^{T} g_j^{(l_1,l_2)} \mathbb{E}[D^{(l_1)}_{\omega_j} D^{(l_2)}_{\omega_{j+h}}] \right| = \begin{cases}
O \left(\frac{1}{\sqrt{T}} \right) & \text{under Assumption 4.1.} \\
O \left(\frac{\sqrt{T}}{bT} \right) & \text{under Assumption 4.3.}
\end{cases}
$$

Observe next that

$$
\mathbb{E}[\mathcal{F}^{(l_1,l_1)}_{\omega_j} \mathcal{F}^{(l_2,l_2)}_{\omega_{j+h}}] - \mathcal{F}^{(l_1,l_1)}_{\omega_j} \mathcal{F}^{(l_2,l_2)}_{\omega_{j+h}} = \left(\frac{2\pi}{bT} \right)^2 \sum_{j_1, j_2 = 1}^{T} K \left(\frac{\omega_{j_1}}{b} \right) K \left(\frac{\omega_{j_2}}{b} \right) \mathbb{E}[D^{(l_1)}_{\omega_{j_1-j_2}} D^{(l_1)}_{\omega_{j_1-h-j_2}} D^{(l_2)}_{\omega_{j_2-j_1-h}} D^{(l_2)}_{\omega_{j_2-h-j_1}}] - \mathcal{F}^{(l_1,l_1)}_{\omega_j} \mathcal{F}^{(l_2,l_2)}_{\omega_{j+h}}
$$
\[
(2\pi)^2 \sum_{j_1,j_2=1}^{T} K(\frac{\omega_{j_1}}{b}) K(\frac{\omega_{j_2}}{b}) \left(\text{cum}(D_{\frac{l_1}{\omega}} D_{\frac{l_2}{\omega}}) \text{cum}(D_{\frac{l_1}{\omega}} D_{\frac{l_2}{\omega}}) \right) + O\left(b^2 + \frac{1}{bT}\right).
\]

Here, it was used that \(E[|\hat{g}_{\omega_{j}}^{(l_1,t_1)} - g_{\omega_{j}}^{(l_1,t_1)}|] \leq E[\|\hat{F}_{\omega_{j}} - F_{\omega_{j}}\|_2] \|\psi_{1}\|_2 \|\psi_{1}\|_2 = O(b^2 + 1/bT)\) under \(H_0\).

The same bound holds under the alternative, where \(F_{\omega_{j}}\) is replaced with the integrated spectrum \(G_{\omega_{j}}\). Under the alternative, write

\[
\left(2\pi\right)^2 \sum_{j_1,j_2=1}^{T} K(\frac{\omega_{j_1}}{b}) K(\frac{\omega_{j_2}}{b}) \left(\tilde{g}_{\omega_{j_1,j_2}}^{(l_1,t_2)} \tilde{g}_{\omega_{j_1,j_2}}^{(l_1,t_2)} + \tilde{g}_{\omega_{j_1,j_2}}^{(l_1,t_2)} \tilde{g}_{\omega_{j_1,j_2}}^{(l_1,t_2)} \right) + O\left(\frac{1}{T}\right) + O\left(b^2 + \frac{1}{bT}\right) = O\left(b^2 + \frac{1}{bT}\right)
\]

where Corollary A.1 of the main paper was applied and where we used that the bandwidth leads to only \(bT\) nonzero terms in the summation. Under \(H_0\), a similar argument shows that the term is of order \(O(b^2 + 1/bT)\). The result now follows.

S3 Convergence of finite-dimensional distributions

Theorem S3.1. Let Lemma A.1 be satisfied for some finite \(k \geq 3\). Then, for all \(l_i, l'_i \in \mathbb{N}\) and \(h_i \in \mathbb{Z}\) with \(i = 1, \ldots, k\),

\[
\frac{1}{T^{k/2}} \text{cum}\left(w_{h_1}(T) \psi_{l_1,l_1'}, \ldots, w_{h_k}(T) \psi_{l_k,l_k'} \right) = o(1) \quad (T \to \infty),
\]

(S3.1)

where \(w_{h_i}(T) \psi_{l_i,l_i'} = \langle w_{h_i}(T), \psi_{l_i,l_i'} \rangle \) and \((\psi_{l_i,l_i'} : l_i, l_i' \in \mathbb{N})\) an orthonormal basis of \(L^2([0,1]^2, \mathbb{C})\)

Proof. The proof is given in three parts, the first of which provides the outset, the second gives the arguments for the stationary case, while the third deals with the locally stationary situation.

1) **Preliminaries.** Fix \(\tau_1, \tau_2 \in [0, 1]\) and \(h = 1, \ldots, T - 1\). It will be shown that the finite-dimensional distributions of \((w_{h_i}(T)(\tau_1, \tau_2) : T \in \mathbb{N})\) converge to a Gaussian distribution by proving that the higher order cumulants of the terms \(\sqrt{T} w_{h_i}(T)(\psi_{l_i,l_i'})\) vanish asymptotically. To formulate this, consider an array of the form

\[
\begin{align*}
&\begin{pmatrix} 1, 1 \end{pmatrix} \begin{pmatrix} 1, 2 \end{pmatrix} \\
&\vdots \\
&\begin{pmatrix} k, 1 \end{pmatrix} \begin{pmatrix} k, 2 \end{pmatrix}
\end{align*}
\]

(S3.2)

and let the value \(s = i l'\) correspond to entry \((i, i')\). For a partition \(P = \{P_1, \ldots, P_Q\}\), the elements of a set \(P_q\) will be denoted by \(s_{q_1}, \ldots, s_{q_m_q}\) where \(|P_q| = m_q\) is the corresponding number of elements in \(P_q\). Associate with entry \(s\) the frequency index \(j_s = j_{s} = (-1)^{i-1}(j_i + h_i^{-1})\), Fourier frequency \(\lambda_{j_s} = \frac{2\pi j_s}{T}\) and the basis
function index \(v_s = v_{i'j'} = t_i^{2-i'} t_i^{i'-1} \) for \(i = 1, \ldots, k \) and \(i' = 1, 2 \). An application of the product theorem for cumulants yields

\[
\text{cum} \left(\sum_{j_1=1}^T D_{\omega_{j_1}} (l_1) D_{\omega_{j_1+h_1}} (l_2) \cdots \sum_{j_k=1}^T D_{\omega_{j_k}} (l_k) D_{\omega_{j_k+h_k}} (l_k') \right) = \sum_{j_1, \ldots, j_k} \sum_{i.p.} \text{cum}(D_{\omega_{j_s}}; s \in P_1) \cdots \text{cum}(D_{\omega_{j_s}}; s \in P_Q),
\]

where the summation extends over all indecomposable partitions \(P = \{ P_1, \ldots, P_Q \} \) of (S3.2). Because \(X_t \) has zero-mean, the number of elements within each set must satisfy \(m_q \geq 2 \). To ease notation, write \(D_{\omega_{j_k}} = \langle D_{\omega_{j_k}}(T) \rangle \) and

\[
\mathcal{F}^{(v_s)}_{t/T; \omega_{j_s}} = \langle f_{t/T; \omega_{j_q1}, \ldots, \omega_{j_qm_q-1}}, \otimes_{t' \neq \omega_{jq'}, \omega_{j_q}}^m \psi_{v_{i'j'}}, \rangle,
\]

noting that the latter quantity is well-defined. An application of Lemma A.1 of the main paper yields

\[
\sum_{i.p.}^{Q} \sum_{q=1}^{Q} \text{cum}(D_{\omega_{j_s}}; s \in P_q) = \sum_{i.p.}^{Q} \sum_{q=1}^{Q} \left[\frac{(2\pi)^{m_q/2-1}}{T^{m_q/2}} \left(\sum_{t=0}^{T-1} \mathcal{F}^{(v_s)}_{t/T; \omega_{j_s}} e^{-i \sum_s t \lambda_{j_s}}; s \in P_q \right) + O \left(\frac{1}{T^{m_q/2}} \right) \right],
\]

where under the null \(\mathcal{F}^{(v_s)}_{t/T; \omega_{j_s}} = \mathcal{F}^{(v_s)}_{t/T; \omega_{j_s}} \). In the following, the proof is separated into the cases where the true process is stationary and where it is locally stationary.

(2) Proof under stationarity. Recall that \(\sup_\omega \| \mathcal{F}^{(v_s)}_{\omega_{j_1}, \ldots, \omega_{j_{k'-1}}} \|_2 < \infty \) for all \(k' \leq k \), and thus, by the Cauchy–Schwarz inequality, \(\sup_\omega |\mathcal{F}^{(v_s)}_{\lambda_{j_s}}| < \infty \) for \(s \in P_q \) and \(q = 1, \ldots, Q \). Therefore,

\[
\sum_{i.p.}^{Q} \sum_{q=1}^{Q} \text{cum}(D_{\omega_{j_s}}; s \in P_q) \leq \sum_{i.p.}^{Q} \sum_{q=1}^{Q} \left[\frac{(2\pi)^{m_q/2-1}K_q}{T^{m_q/2}} \Delta^{(T)} \left(\sum_{s \in P_q} \lambda_{j_s} \right) + O \left(\frac{1}{T^{m_q/2}} \right) \right]
\]

for some constants \(K_1, \ldots, K_Q \) independent of \(T \). Due to the functions \(\Delta^{(T)} \), there are \(Q \) constraints if \(Q < k \) or if \(Q = k \) and there exists \(h_{i_1} \) and \(h_{i_2} \) such that \(h_{i_1} \neq h_{i_2} \) for \(i_1, i_2 \in \{ 1, \ldots, k \} \). On the other hand, if the size of the partition is equal to \(k \) and \(h_{i_1} = h_{i_2} \) for all \(i_1, i_2 \in \{ 1, \ldots, k \} \), there are \(Q - 1 \) constraints. This implies that

\[
\frac{1}{T^{n/2}} \text{cum} \left(\sum_{j_1=1}^T D_{\omega_{j_1}} (l_1) D_{\omega_{j_1+h_1}} (l_1') \cdots \sum_{j_k=1}^T D_{\omega_{j_k}} (l_k) D_{\omega_{j_k+h_k}} (l_k') \right) = O(T^{-n/2} T^{-n-(Q-1)/2} T^{Q}) = O(T^{-n/2+1}).
\]
The cumulants of order \(k \geq 3 \) will therefore tend to 0 as \(T \to \infty \).

(3) Proof under local stationarity. Write (S3.3) in terms of the Fourier coefficients as

\[
\frac{1}{T^{m/2}} \sum_{j_1, \ldots, j_k = 1}^T \prod_{q=1}^Q \text{cum}(D_{\lambda_k}^{(v_q)}: s \in P_q) = \frac{1}{T^{m/2}} \sum_{j_1, \ldots, j_k = 1}^T \prod_{q=1}^Q \left[\frac{(2\pi)^{m_q/2-1}}{T^{m_q/2-1}} \left(\tilde{\mathcal{F}}_{\lambda_k}^{(v_q)} : s \in P_q \right) + O \left(\frac{1}{T^{m_q/2}} \right) \right].
\]

Note that, by Corollary A.1 and the Cauchy–Schwarz inequality,

\[
\sum_{j=1}^T \left| \tilde{\mathcal{F}}_{\lambda_k}^{(v_q)} \right| \leq \sup_{\omega} \sum_{j \in \mathbb{Z}} \| \tilde{\mathcal{F}}_{j,\omega} \|_2 m_q \prod_{l=1}^{m_q} \| \psi_{l,\omega} \|_2 < \infty, \quad s \in P_q,
\]

for all \(q = 1, \ldots, Q \). If \(Q < k \) or if \(Q = k \) and there are \(h_{i_1} \) and \(h_{i_2} \) such that \(h_{i_1} \neq h_{i_2} \) for \(i_1, i_2 \in \{1, \ldots, k\} \) within the same set, then there is dependence on \(Q \) of the \(k \) sums \(j_1, \ldots, j_k \). On the other hand, if the size of the partition is equal to \(k \) and \(h_{i_1} = h_{i_2} \) for all \(i_1, i_2 = 1, \ldots, k \), then there are \(Q-1 \) constraints on \(j_1, \ldots, j_n \). Thus, similar to the stationary case, it follows that the order is

\[
O(T^{-k/2}T^{k-Q+1}T^{-k/2}+Q) = O(T^{-k/2+1}),
\]

hence giving the result.

\[\square \]

S4 Proofs under the alternative hypothesis of local stationarity

Completion of the proof of Theorem 4.6. To find the expressions for the covariance structure of \(\sqrt{T} \gamma_h^{(T)} \) and its complex conjugate, use Theorem A.1 and Lemma A.2 of the main paper to write

\[
\text{Cov}(D_{\omega_1}^{(l_1)} D_{\omega_2}^{(l_2)} D_{\omega_2}^{(l_3)} D_{\omega_2}^{(l_4)}) = \frac{2\pi}{T} \tilde{\mathcal{F}}_{\lambda_k}^{(l_1, l_2)} \left((1-j_1-j_2+2h; \omega_1, -\omega_2, \omega_2) \right) + O \left(\frac{1}{T^2} \right)
\]

Thus,

\[
\text{Cov}(\sqrt{T} \gamma_h^{(T)}(l_1, l_2), \sqrt{T} \gamma_h^{(T)}(l_3, l_4)) = \frac{1}{T} \sum_{j_1, j_2 = 1}^T \left\{ \frac{2\pi}{T} \tilde{\mathcal{F}}_{\lambda_k}^{(l_1, l_2)} \left((1-j_1-j_2+2h; \omega_1, -\omega_2, \omega_2) \right) \right\} + \frac{\tilde{\mathcal{F}}_{\lambda_k}^{(l_1, l_4)} \left((1-j_1-j_2+2h; \omega_1, -\omega_1, \omega_1) \right)}{(G_{\omega_1}^{(l_1, l_4)} G_{\omega_1}^{(l_3, l_4)} G_{\omega_2}^{(l_3, l_2)} G_{\omega_2}^{(l_1, l_2)})^{1/2}}
\]

12
\[+ O\left(\frac{1}{T} \left[\frac{\tilde{\mathcal{F}}(l_1, l_3)}{(G_{\omega_j}^1 G_{\omega_j^2})^{1/2}} \right]^2 \right) \right]. \]

By Corollary A.1 (ii), this equals

\[
\Sigma_{h_1, h_2}^{(T)} (l_4) = T \text{ Cov} \left(\gamma_{h_1}^{(T)} (l_1, l_2), \gamma_{h_2}^{(T)} (l_3, l_4) \right) \quad (S4.1)
\]

\[= \frac{1}{T} \sum_{j_1, j_2=1}^T g_{j_1, j_2}^{(l_1, l_2, l_3, l_4)} \left(\tilde{\mathcal{F}}(l_1, l_3) \tilde{\mathcal{F}}(l_2, l_4) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} \right) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} + O \left(\frac{1}{T} \right), \]

where \(g_{j_1, j_2}^{(l_1, l_2, l_3, l_4)} = G(l_1, l_2) \ G(l_3, l_4) \ G(\omega_{j_1}) \ G(\omega_{j_2}) \) \(-1/2\). Similarly,

\[\Sigma_{h_1, h_2}^{(T)} (l_4) = T \text{ Cov} \left(\gamma_{h_1}^{(T)} (l_1, l_2), \gamma_{h_2}^{(T)} (l_3, l_4) \right) \quad (S4.2)\]

\[= \frac{1}{T} \sum_{j_1, j_2=1}^T g_{j_1, j_2}^{(l_1, l_2, l_3, l_4)} \left(\tilde{\mathcal{F}}(l_1, l_3) \tilde{\mathcal{F}}(l_2, l_4) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} \right) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} + O \left(\frac{1}{T} \right), \]

\[\Sigma_{h_1, h_2}^{(T)} (l_4) = T \text{ Cov} \left(\gamma_{h_1}^{(T)} (l_1, l_2), \gamma_{h_2}^{(T)} (l_3, l_4) \right) \quad (S4.3)\]

\[= \frac{1}{T} \sum_{j_1, j_2=1}^T g_{j_1, j_2}^{(l_1, l_2, l_3, l_4)} \left(\tilde{\mathcal{F}}(l_1, l_3) \tilde{\mathcal{F}}(l_2, l_4) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} \right) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} + O \left(\frac{1}{T} \right), \]

and

\[\Sigma_{h_1, h_2}^{(T)} (l_4) = T \text{ Cov} \left(\gamma_{h_1}^{(T)} (l_1, l_2), \gamma_{h_2}^{(T)} (l_3, l_4) \right) \quad (S4.4)\]

\[= \frac{1}{T} \sum_{j_1, j_2=1}^T g_{j_1, j_2}^{(l_1, l_2, l_3, l_4)} \left(\tilde{\mathcal{F}}(l_1, l_3) \tilde{\mathcal{F}}(l_2, l_4) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} \right) \nu_{j_1 - j_2 = \omega_{j_1} + \omega_{j_2}} + O \left(\frac{1}{T} \right). \]

This completes the proof. \[\square\]
Similarly, we find for the covariance structure of Theorem E.3:

$$\Upsilon_{h_1,h_2}(\psi_1,\psi_2) = \lim_{T \to \infty} \frac{1}{T} \sum_{j_1,j_2=1}^{T} \left(\left\langle \tilde{F}_{j_1-j_2}\omega_j \psi_2' \right\rangle \psi_1^* \right)$$

$$+ \left\langle \tilde{F}_{j_1+j_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

$$+ \frac{2\pi}{T} \left\langle \tilde{F}_{h_1+h_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

(S4.5)

$$\hat{\Upsilon}_{h_1,h_2}(\psi_1,\psi_2) = \lim_{T \to \infty} \frac{1}{T} \sum_{j_1,j_2=1}^{T} \left(\left\langle \tilde{F}_{j_1-j_2}\omega_j \psi_2' \right\rangle \psi_1^* \right)$$

$$+ \left\langle \tilde{F}_{j_1+j_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

$$+ \frac{2\pi}{T} \left\langle \tilde{F}_{h_1+h_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

(S4.6)

$$\bar{\Upsilon}_{h_1,h_2}(\psi_1,\psi_2) = \lim_{T \to \infty} \frac{1}{T} \sum_{j_1,j_2=1}^{T} \left(\left\langle \tilde{F}_{j_1-j_2}\omega_j \psi_2' \right\rangle \psi_1^* \right)$$

$$+ \left\langle \tilde{F}_{j_1+j_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

$$+ \frac{2\pi}{T} \left\langle \tilde{F}_{h_1+h_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

(S4.7)

and

$$\hat{\Upsilon}_{h_1,h_2}(\psi_1,\psi_2) = \lim_{T \to \infty} \frac{1}{T} \sum_{j_1,j_2=1}^{T} \left(\left\langle \tilde{F}_{j_1-j_2}\omega_j \psi_2' \right\rangle \psi_1^* \right)$$

$$+ \left\langle \tilde{F}_{j_1+j_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

$$+ \frac{2\pi}{T} \left\langle \tilde{F}_{h_1+h_2} \omega_j \psi_2' \right\rangle \psi_1^* \psi_2 \psi_3 \psi_4$$

(S4.8)

S5 Results for the fourth-order spectrum

Using a basis expansion, the expectation of the fourth-order periodogram operator can be expressed in terms of the cumulants of the upscaled fDFTs. We have

$$E[T^{(T)}(\omega_{j_1}, \omega_{j_2}, \omega_{j_3}, \omega_{j_4})] = \frac{1}{(2\pi)^3} (2\pi T)^2 D^{(T)}_{\omega_{j_1}} \otimes D^{(T)}_{\omega_{j_2}} \otimes D^{(T)}_{\omega_{j_3}} \otimes D^{(T)}_{\omega_{j_4}}$$
where Theorem B.1 has been applied to reach the second equality. Note that, due to the inclusion of the function Φ, only those terms are to be considered for which the frequencies satisfy $j_4 = -j_1 - j_2 - j_3$ in such a way that $j_1 \neq j_2$, $j_1 \neq j_3$, and $j_2 \neq j_3$, and $j_1 \neq j_4$. For such values not contained in a proper submanifold, the products of second-order cumulant tensors are at most of order $O(T^{-2})$ in an L^2 sense under the null hypothesis. Using Lemma B.1, it follows that, under H_0,

$$\|E[I_{\omega_1,\omega_2,\omega_3,\omega_4}(T)] - \frac{T}{(2\pi)^2} \mathbb{F}_{\omega_1,\omega_2,\omega_3,\omega_4}(T)\|_2 = O\left(\frac{T}{T^2}\right) = O\left(\frac{1}{T}\right)$$

and hence asymptotically unbiased. Using a standard smoothing kernel argument and a subsequent Taylor expansion, the estimator (5.4) is readily shown to satisfy

$$\|E[\hat{\mathbb{F}}_{\omega_1,\omega_2,\omega_3,\omega_4}(T)] - \mathbb{F}_{\omega_1,\omega_2,\omega_3,\omega_4}(T)\|_2 = O\left(\frac{1}{b_4 T} + b_4^2\right)$$

and hence

$$\|E[\int \hat{\mathbb{F}}_{\omega_1,\omega_2,\omega_3,\omega_4}(T) d\omega d\omega'] - \int \mathbb{F}_{\omega_1,\omega_2,\omega_3,\omega_4}(T) d\omega d\omega'\|_2 = O\left(\frac{1}{b_4 T} + b_4^2\right).$$

Under the alternative, (S5.1) continues to hold. Again only those combinations of j_1, \ldots, j_4 have to be considered that are on the principal manifold but not on a proper submanifold. By Lemma B.2, the first term of the decomposition in (S5.1) now yields the time-integrated fourth order spectral density operator plus an error term

$$\frac{T}{(2\pi)} \left(\frac{2\pi}{T^2} \sum_{t=0}^{T-1} \mathbb{F}_{t/T, \omega_1, \ldots, \omega_4} e^{-i\sum_{l=1}^{4} t \omega_l} + R_{4,T} \right),$$

where $R_{4,T} = O(T^{-2})$ and hence multiplied by T leads to an error of $O(T^{-1})$. Additionally, there are three terms of the form

$$\frac{T}{(2\pi)} \left(\frac{1}{T^2} \sum_{t,t'=0}^{T-1} \mathbb{F}_{t/T, \omega_1} \otimes \mathbb{F}_{t/T, \omega_3} e^{-i(t(\omega_1 + j_2) + t'(\omega_3 + j_4))} + R_{2,T} \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{F}_{t/T, \omega_1} e^{-i(\omega_1 + j_2)} + R_{2,T} \right).$$

Note that Φ only selects those terms for which the frequencies satisfy $j_4 = -j_1 - j_2 - j_3$ such that $j_1 \neq j_2$, $j_1 \neq j_3$, and $j_2 \neq j_3$. Let \mathcal{R} be a remainder element of $S_2(H)$. The second-order terms can be written as

$$\frac{T}{(2\pi)} \left(\frac{1}{T^2} \sum_{t,t'=0}^{T-1} \mathbb{F}_{t/T, \omega_1} \otimes \mathbb{F}_{t/T, \omega_3} e^{-i(t-t')(\omega_1 + j_2)} + \frac{\mathcal{R}}{T} \frac{2}{|j_1 + j_2|^2} \right).$$
Therefore, consider bounding their smoothed versions
\[
\frac{(2\pi)^3}{(b_4 T)^3} \sum_{k_1, k_2, k_3} K_4 \left(\frac{\omega_j - \alpha_k}{b_4}, \ldots, \frac{\omega_{j_4} + \sum_{i=1}^{3} \alpha_{k_i}}{b_4} \right) \Phi(\alpha_{k_1}, \ldots, \alpha_{k_4}) \left(\frac{1}{(2\pi)T} \sum_{t, t'=0}^{T-1} \mathcal{F}_{t/T, \alpha_{k_1}} \otimes \mathcal{F}_{t'/T, \alpha_{k_3}} e^{-i(t-t')(\alpha_{k_1} + \alpha_{k_2})} + \frac{1}{(2\pi) |k_1 + k_2|^2} \right).
\]

Consider the leading term first. The double sum and nonnegativity of the smoothing kernels allows to derive the upper bound
\[
\frac{(2\pi)^3}{(b_4 T)^3} \sum_{k_1, k_2, k_3} \left\| K_4 \left(\frac{\omega_j - \alpha_k}{b_4}, \ldots, \frac{\omega_{j_4} + \sum_{i=1}^{3} \alpha_{k_i}}{b_4} \right) \Phi(\alpha_{k_1}, \ldots, \alpha_{k_4}) \left(\frac{1}{(2\pi)T} \sum_{t, t'=0}^{T-1} \mathcal{F}_{t/T, \alpha_{k_1}} \otimes \mathcal{F}_{t'/T, \alpha_{k_3}} e^{-i(t-t')(\alpha_{k_1} + \alpha_{k_2})} \right) \right\|_2^2 \leq \frac{(2\pi)^2}{b_4^4 (T)^4} \sum_{k_1, k_2, k_3} K_4 \left(\frac{\omega_j - \alpha_k}{b_4}, \ldots, \frac{\omega_{j_4} + \sum_{i=1}^{3} \alpha_{k_i}}{b_4} \right) \Phi(\alpha_{k_1}, \ldots, \alpha_{k_4}) \left(\frac{1}{(2\pi)T} \sum_{t, t'=0}^{T-1} e^{-i(t-t')(\alpha_{k_1} + \alpha_{k_2})} \right) \left(\left\| \mathcal{F}_{t/T, \alpha_{k_1}} \otimes \mathcal{F}_{t/T, \alpha_{k_3}} \right\|_2 \right)^2,
\]

but since submanifolds, i.e., \(k_1 = k_2 \), are not allowed via \(\Phi \), the above can be bounded by
\[
\sup_{u, \omega} \| \mathcal{F}_{u, \omega} \|_2^2 \frac{(2\pi)^2}{b_4^4 (T)^4} \sum_{k_1, k_2, k_3} K_4 \left(\frac{\omega_j - \alpha_k}{b_4}, \ldots, \frac{\omega_{j_4} + \sum_{i=1}^{3} \alpha_{k_i}}{b_4} \right) \Phi(\alpha_{k_1}, \ldots, \alpha_{k_4}) \left(\Delta_{T}^{(\alpha_{k_1} + \alpha_{k_2})} \right)^2 = O \left(\frac{1}{b_4^4 T^2} \right).
\]

Now consider the two error terms. A change of variables gives
\[
\frac{(2\pi)^3}{(b_4 T)^3} \sum_{k_1, k_2, k_3} K_4 \left(\frac{\omega_k}{b_4}, \ldots, \frac{\omega_{k_4}}{b_4} \right) \Phi(\omega_j - \alpha_k) \frac{\mathcal{R}}{|j_1 - k_1 + j_2 - k_2|^2}
\]
and by the \(p \)-harmonic series this is of order
\[
\left\| \frac{(2\pi)^3}{(b_4 T)^3} \sum_{k_2, k_3, l} K_4 \left(\frac{\omega_k}{b_4}, \ldots, \frac{\omega_{k_4}}{b_4} \right) \Phi(\omega_j - \alpha_k) \frac{\mathcal{R}}{|l|^2} \right\|_2^2 = O \left(\frac{1}{b_4^4 T} \right).
\]

Therefore, a similar argument as under the null yields
\[
E \left[\int \int \hat{f}^{(T)}_{\omega - \omega_h, -\omega'h, \omega'} d\omega d\omega' \right] - \int \int G_{\omega, -\omega + \omega_h, -\omega', \omega'} d\omega d\omega' = O \left(\frac{1}{b_4 T} + b_4^3 \right),
\]
where \(G_{\omega, -\omega + \omega_h, -\omega', \omega'} \) is the time-integrated fourth-order spectral density operator acting on \(S_2 \left(\mathcal{H}_C \right) \).

References

