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Abstract

Methodology is proposed to uncover structural breaks in functional data that is “fully functional” in the

sense that it does not rely on dimension reduction techniques. A thorough asymptotic theory is developed

for a fully functional break detection procedure as well as for a break date estimator, assuming a fixed

break size and a shrinking break size. The latter result is utilized to derive confidence intervals for the

unknown break date. The main results highlight that the fully functional procedures perform best under

conditions when analogous fPCA based estimators are at their worst, namely when the feature of interest

is orthogonal to the leading principal components of the data. The theoretical findings are confirmed by

means of a Monte Carlo simulation study in finite samples. An application to annual temperature curves

illustrates the practical relevance of the proposed fully functional procedure.
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1 Introduction

This paper considers the problem of detecting and dating structural breaks in functional time series data, and

hence lies at the intersection of functional data analysis (FDA) and structural breaks analysis for dependent ob-

servations. FDA has witnessed an upsurge in research contributions in the past decade. These are documented,

for example, in the comprehensive books by Ramsay and Silverman (2005) and Ferraty and Vieu (2010). Re-

search concerned with structural breaks has a longstanding tradition in both the statistics and econometrics
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communities. Two recent reviews by Aue and Horváth (2013) and Horváth and Rice (2014) highlight newer

developments, the first with a particular focus on time series.

Early work in functional structural break analysis dealt primarily with random samples of independent

curves, the question of interest being whether all curves have a common mean function or whether there are

two or more segments of the data that are homogeneous within but heterogeneous without. Berkes et al. (2009)

developed statistical methodology to test the null hypothesis of no structural break against the alternative of a

(single) break in the mean function assuming that the error terms are independent and identically distributed

curves. Aue et al. (2009) quantified the large-sample behavior of a break date estimator under a similar set of

assumptions. The work in these two papers was generalized by Aston and Kirch (2012a, b) and Torgovitski

(2016) to include functional time series into the modeling framework. In Zhang et al. (2011), a structural

break detection procedure for serially correlated functional time series data is proposed that is based on the

self-normalization approach of Shao and Zhang (2010). Structual break detection in the context of functional

linear models is considered in Aue et al. (2014) and for spatially distributed functional data in Gromenko et

al. (2016).

Most of the procedures in FDA, such as those presented in the above cited papers, are based on dimension

reduction techniques, primarily using the widely popular functional principal components analysis (fPCA),

by which the functional variation in the data is projected onto the directions of a small number of principal

curves, and multivariate techniques are then applied to the resulting sequence of score vectors. This is also the

case in functional structural break detection, in which after an initial fPCA step multivariate structural break

theory is utilized. Despite the fact that functional data are, at least in principle, infinite dimensional, the state

of the art in FDA remains to start the analysis with an initial dimension reduction procedure.

Dimension reduction approaches, however, automatically incur a loss of information, namely all informa-

tion about the functional data that is orthogonal to the basis onto which it is projected. This weakness is easily

illustrated in the context of detecting and dating structural breaks in the mean function: if the function repre-

senting the mean break is orthogonal to the basis used for dimension reduction, there cannot be a consistent

test or estimator for the break date in that basis. This point will be further argued by theoretical arguments

and in comprehensive numerical studies in Section 4, where further, more subtle, differences between the

competing methods will be highlighted.

The main purpose of this paper is then to develop methodology for detecting and dating structural breaks

in functional data without the application of dimension reduction techniques. Here, fully functional test

statistics and break date estimators are studied, and their asymptotic theory is developed under the assumption

that the model errors satisfy a general weak dependence condition. This theory illuminates a number of

potential advantages of the fully functional procedures. For example, it is shown that when the direction of
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the break is orthogonal to the leading principal components of the data, the estimation of the mean break

is asymptotically improved when using the fully functional estimator compared to mean breaks of the same

size that are contained in the leading principal components. This contrasts with fPCA based techniques in

which such mean breaks are more difficult, if not impossible, to detect, even given arbitrarily large sample

sizes. In addition, the assumptions required for the fully functional theory are weaker than the ones used in

Aue et al. (2009) and Aston and Kirch (2012a, b), as convergence of the eigenvalues and eigenfunctions of

the empirical covariance operator to the eigenvalues of the population covariance operator do not have to be

accounted for. These assumptions are typically formulated as finiteness of fourth moment conditions. The

relaxation obtained here may be particularly useful for applications to intra-day financial data such as the one-

minute log-returns on Microsoft stock discussed in the online supplement Aue et al. (2016+) accompanying

this article.

The application presented in Section 5 is concerned with annual temperature curves recorded across differ-

ent measuring stations in Australia. Structural breaks in these temperature curves are detected with both fPCA

and fully functional methods. The sample covariance operator associated with these data has eigenvalues that

decay remarkably slowly. A somewhat peculiar feature of fPCA methods in this setting, studied as part of

the simulation experiment, is a loss of accuracy in break dating even when the break function loads almost

exclusively on the first component. A similar effect is found in the data, where fPCA-based break dates can

occur outside of the confidence intervals provided by the fully functional procedure.

Most closely related to the present work are Fremdt et al. (2014), who considered structural break de-

tection using fPCA under an increasing number of projections. Horváth et al. (2014) developed a functional

analog of the KPSS test statistic for the purpose of stationarity testing that does not rely on dimension reduc-

tion. Sharipov et al. (2016) considered a bootstrap procedure for measuring the significance of the norms of

functional CUSUM processes with applications to testing for a structural break in the distribution of scalar

time series observations under a mixing assumption, generalizing the result for the independent, identically

distributed case put forward in Tsudaka and Nishiyama (2014). Bucchia and Wendler (2016+) studied general

bootstrap procedures for structural break analysis in Hilbert space-valued random fields.

The remainder of the paper is organized as follows. Testing procedures and a break date estimator are

introduced in Section 2, along with the main asymptotic results of the paper. The asymptotic properties devel-

oped in this section are accompanied by implementation details given in Section 3 and results from a compre-

hensive simulation study in Section 4. The application to temperature curves is given in Section 5, and Section

6 concludes. Proofs of the main results as well as additional empirical illustrations of the proposed methodol-

ogy are provided in the online supplement Aue et al. (2016+), henceforth referred to simply as the online sup-

plement. In addition, a shiny app has been developed and is available online to experiment with the simulation

3



setting at the URL https://changepointappozan.shinyapps.io/shinyapp/ and with the real

data at https://changepointappozan.shinyapps.io/AustraliaTemperatureData/. The

app allows the interested reader to reproduce the presented empirical results.

2 Main results

In this paper, a functional data model allowing for a mean function break is considered. It is assumed that the

observations X1, . . . , Xn are generated from the model

Xi = µ+ δ1{i > k∗}+ εi, i ∈ Z, (2.1)

where k∗ = bθnc, with θ ∈ (0, 1), labels the unknown time of the mean break parameterized in terms of the

sample size n, µ is the baseline mean function that is distorted by the addition of δ after the break time k∗, 1A

denotes the indicator function of the setA and Z the set of integers. EachXi is a function defined without loss

of generality on the unit interval [0, 1]. The argument t ∈ [0, 1] will be used to refer to a particular value Xi(t)

of the function Xi. Correspondingly, the quantities µ, δ and εi on the right-hand side of 2.1 are functions on

[0, 1] as well. Interest is first in testing the structural break hypotheses

H0 : δ = 0 versus HA : δ 6= 0,

and then, in the event that HA is thought to hold, dating the break date k∗. Throughout the following assump-

tions are made, roughly entailing that the innovations (εi : i ∈ Z) are weakly dependent, stationary functional

time series. Below, let ‖ · ‖ denote the canonical norm in L2[0, 1].

Assumption 2.1. The innovations (εi : i ∈ Z) satisfy

(a) there is a measurable function g : S∞ → L2[0, 1], where S is a measurable space and independent,

identically distributed (iid) functional innovations (εi : i ∈ Z) taking values in S such that εi = g(εi, εi−1, . . .)

for i ∈ Z;

(b) there are `-dependent sequences (εi,` : i ∈ Z) such that, for some p > 2,

∞∑
`=0

(
E[‖εi − εi,`‖p

)1/p
<∞,

where εi,` = g(εi, . . . , εi−`+1, ε
∗
i,`,i−`, ε

∗
i,`,i−`−1, . . .) with ε∗i,`,j being independent copies of εi,0 independent

of (εi : i ∈ Z).

Processes satisfying Assumption 2.1 were termed Lp-m-approximable by Hörmann and Kokoszka (2010),

and cover most stationary functional time series models of interest, including functional AR and ARMA

processes (see Aue et al., 2015; and Bosq, 2000). It is assumed that the underlying error innovations (εi : i ∈
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Z) are elements of an arbitrary measurable space S. However, in many examples S is itself a function space,

and the evaluation of g(εi, εi−1, ...) is a functional of (εj : j ≤ i).

The proposed methodology is based on the (scaled) functional cumulative sum (CUSUM) statistic

S0
n,k =

1√
n

( k∑
i=1

Xi −
k

n

n∑
i=1

Xi

)
. (2.2)

The superscript 0 indicates the tied-down nature of the CUSUM statistic, since S0
n,0 = S0

n,n = 0 (interpreting

an empty sum as zero). Noting that ‖S0
n,k‖ as a function of k tends to be large at the true break date motivates

the use of the max-type structural break detector

Tn = max
1≤k≤n

‖S0
n,k‖2

to test H0 versus HA. Furthermore, the break date estimator for k∗ may be taken as

k̂∗n = min
{
k : ‖S0

n,k‖ = max
1≤k′≤n

‖S0
n,k′‖

}
. (2.3)

The main results of this paper concern the large-sample behavior and empirical properties of the test statistic

Tn and the estimator k∗n.

2.1 Asymptotic properties of structural break detector

UnderH0, the limiting behavior of S0
n,k evidently depends on that of the partial sum process of the error terms

(εi : i ∈ Z). As this sequence may be weakly serially correlated under Assumption 2.1, the asymptotics of the

partial sum process necessarily involve the long-run covariance kernel

Cε(t, t
′) =

∞∑
`=−∞

Cov(ε0(t), ε`(t
′)) (2.4)

of the error sequence (εi : i ∈ Z). Note that Cε constitutes the limiting covariance kernel of the sample mean

under H0. It is a well defined element of L2[0, 1]2 under Assumption 2.1. This kernel was considered initially

in Hörmann and Kokoszka (2010). It was also studied in Panaretos and Tavakoli (2012) in the context of

spectral analysis of functional time series, and in Horváth et al. (2013) in an application to the functional two

sample problem. In addition, Cε may be used to define a positive definite and symmetric Hilbert–Schmidt

integral operator on L2[0, 1], cε, given by

cε(f)(t) =

∫
Cε(t, s)f(s)ds,

which further defines a non-increasing sequence of nonnegative eigenvalues (λ` : ` ∈ N) and a corresponding

orthonormal basis of eigenfunctions (φ` : ` ∈ N) satisfying

cε(φ`)(t) = λ`φ`(t), ` ∈ N. (2.5)

The eigenvalues of cε determine the limiting distribution of Tn as detailed in the following theorem.
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Theorem 2.1. Under Model 2.1, Assumption 2.1 and H0,

Tn
D→ sup

0≤x≤1

∞∑
`=1

λ`B
2
` (x) (n→∞), (2.6)

where (B` : ` ∈ N) are independent and identically distributed standard Brownian bridges defined on [0, 1].

Theorem 2.1 points to an asymptotically validated test of H0, namely to reject if the test statistic Tn

exceeds the corresponding quantile of the distribution on the right hand side of (2.6). As the limiting distribu-

tions depends, in a rather complicated way, on the unknown eigenvalues (λ` : ` ∈ N) and standard Brownian

bridges, Monte Carlo simulation can be used to approximate this distribution using estimated eigenvalues.

Implementation details are provided in Section 3 below.

A common assumption made in order for analogous break point detection procedures based on fPCA to

be consistent, as studied for example in Berkes et al. (2009) and Aston and Kirch (2012a), is that δ is not

orthogonal to the principal component basis used to perform the dimension reduction step. When using the

detector Tn no such assumption is needed.

Theorem 2.2. Under Model 2.1, Assumption 2.1 and HA, Tn
P→∞, as n→∞.

The proofs of Theorems 2.1 and 2.2 are in the online supplement.

2.2 Asymptotic properties of the break date estimator

Further advantages of the fully functional approach become apparent when studying the asymptotic properties

of the break date estimator k̂∗n, which are established below. Two cases are studied: the fixed break situation

for which the break size is independent of the sample size, and the shrinking break situation for which the

break size converges to zero at a specified rate. In the fixed break case, the following holds:

Theorem 2.3. If model (2.1) holds with 0 6= δ ∈ L2[0, 1], and if Assumption 2.1 is satisfied, then

k̂∗n − k∗
D→ min

{
k : P (k) = sup

k′∈Z
P (k′)

}
(n→∞), (2.7)

where

P (k) =

{
(1− θ)‖δ‖2k + 〈δ, Sε,k〉, k < 0,

−θ‖δ‖2k + 〈δ, Sε,k〉, k ≥ 0,
(2.8)

with

Sε,k =
k∑
i=1

εi +
−1∑
i=−k

εi.

As one can see in (2.7), the limit distribution of k̂∗n in the case of a fixed break size depends on the unknown

underlying distribution of the error process. This encourages the consideration of a break δn that shrinks as a

function of the sample size, in which case the limit distribution depends on a small set of nuisance parameters,

but otherwise does not depend on the distribution of the error sequence (εi : i ∈ Z).
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Theorem 2.4. If model (2.1) holds with 0 6= δ = δn ∈ L2[0, 1] such that ‖δn‖ → 0 but n‖δn‖2 → ∞ and if

Assumption 2.1 is satisfied, then

‖δn‖2
(
k̂∗n − k∗

) D→ inf
{
x : Q(x) = sup

x′∈R
Q(x′)

}
(n→∞),

where R denotes the real numbers and

Q(x) =

{
(1− θ)x+ σW (x), x < 0,

−θx+ σW (x), x ≥ 0,
(2.9)

with (W (x) : x ∈ R) a two-sided Brownian motion, and

σ2 = lim
n→∞

∫∫
Cε(t, t

′)
δn(t)δn(t′)

‖δn‖2
dtdt′,

where Cε(t, t′) is the long-run covariance kernel of (εi : i ∈ Z) given in (2.4).

An interesting consequence of Theorems 2.3 and 2.4 is that mean changes δ that are orthogonal to the

primary modes of variation in the data are asymptotically easier to detect and estimate. For example, if,

under the conditions of Theorem 2.3, δ is orthogonal to the error functions, then the stochastic term in the

limit distribution vanishes. Moreover, if the functions δn in Theorem 2.4 tend to align with eigenfunctions

corresponding to smaller and smaller eigenvalues of the integral operator with kernel Cε, then σ2 tends to zero

in the definition of Q(x). The proofs of Theorems 2.3 and 2.4 are given in the online supplement.

Theorem 2.4 suggests a confidence interval for k∗.

Corollary 2.1. Let Ξ = inf{x : Q(x) = supx′∈RQ(x′)}. Then, under the conditions of Theorem 2.4 and for

α ∈ (0, 1), the random interval (
k̂∗n −

Ξ1−α/2

‖δn‖2
, k̂∗n −

Ξα/2

‖δn‖2

)
(2.10)

is an approximate 1− α sized confidence interval for k∗, where Ξq is the qth quantile of Ξ.

The main crux here is that δn is unknown and the distribution of Ξ depends on the unknown break fraction

θ and the limiting variance parameter σ2. Consistent estimation techniques for these parameters are discussed

in Section 3 below. This confidence interval is highly conservative in practice due to the fact that it is derived

under the assumption of a shrinking break. A thorough empirical study of the resulting confidence interval is

provided in Section 4.

The last result of this section concerns the large-sample behavior of k̂∗n if no break is present in the data,

that is, if δ = 0 in (2.1).

Theorem 2.5. If model (2.1) holds with δ = 0, so that Xi = µi + εi for all i = 1, . . . , n, and if Assumption

2.1 is satisfied, then

k̂∗n
n

D→ arg max
0≤x≤1

‖Γ0(x, ·)‖ (n→∞),
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where Γ0 is a bivariate Gaussian process with mean zero and covariance function E[Γ0(x, t)Γ0(x′, t′)] =

(min{x, x′} − xx′)Cε(t, t′).

The proof of Theorem 2.5 is provided in the online supplement. Observe that the limiting distribution in

Theorem 2.5 is non-pivotal, but it can be approximated via Monte Carlo simulations using an estimator of

Cε. To see this note that, because of the Karhunen–Loeve representation, Γ0(x, t) can be written in the form∑∞
`=1

√
λ`φ`(t)B`(x), where (λ` : ` ∈ N) and (φ` : ` ∈ N) are the eigenvalues and eigenfunctions of Cε and

(B` : ` ∈ N) are independent standard Brownian bridges. Computing the norm as required for the limit in

Theorem 2.5 yields that

arg max
x∈[0,1]

‖Γ0(x, ·)‖ D
= arg max

x∈[0,1]

( ∞∑
`=1

λ`B
2
` (x)

)1/2

.

Truncation of the sum under the square-root on the right-hand side gives then approximations to the theoretical

limit. For practical purposes population eigenvalues have to be estimated from the data.

2.3 Two fPCA based approaches

In the remainder of this section, the fully functional results put forward in this paper are compared to their

fPCA counterparts in Berkes et al. (2009), Aue et al. (2009), Aston and Kirch (2012a, b), and Torgovitski

(2016). Berkes et al. (2009) and Torgovitski (2016) dealt with detection procedures and Aue et al. (2009) with

break dating procedures, while Aston and Kirch (2012a, b) presented both. A short summary of the different

approaches follows.

The works of Berkes et al. (2009), Aue et al. (2009) and Aston and Kirch (2012a, b) utilized the eigenval-

ues, say τ̂1, . . . , τ̂n, and eigenfunctions, say ψ̂1, . . . , ψ̂n, of the sample covariance operator K̂ of the observa-

tions whose kernel is given by K̂(t, t′) = n−1
∑n

i=1[Xi(t) − X̄n(t)][Xi(t
′) − X̄n(t′)]. In the presence of a

mean break as in (2.1), K̂(t, t′) is the empirical counterpart of the population covariance kernel

K(t, t′) = K0(t, t
′) + θ(1− θ)δ(t)δ(t′),

where K0(t, t
′) = E[ε1(t)ε1(t

′)] is the covariance kernel of the innovations (εi : i ∈ Z). In particular,

the eigenvalues and eigenfunctions of K̂(t, t′) converge to those of K(t, t′) under suitable assumptions that

include the finiteness of the fourth moment E[‖ε1‖4]. Choosing a suitable d ∈ {1, . . . , n} allows one to define

fPCA detectors based on the average quadratic form statistic

R̃n,k = n−1S̃Tn,kΣ̂
−1
n S̃n,k (2.11)

and the break point estimator

k̃∗n = min
{
k : R̃n,k = max

1≤k′≤n
Rn,k′

}
, (2.12)
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where S̃n,k =
∑k

i=1 ξ̂i−kn−1
∑n

i=1 ξ̂i and ξ̂i = (ξ̂i,1, . . . , ξ̂i,d)
T with fPCA scores ξ̂i,` = 〈Xi−X̄n, ψ̂`〉, and

Σ̂n = diag(τ̂1, . . . , τ̂d). For the independent case, the counterparts of Theorems 2.1 and 2.2 were established

in Berkes et al. (2009) for a Cramér–von Mieses test statistics, and those of Theorems 2.3 and 2.4 in Aue et

al. (2009). Aston and Kirch (2012a) considered versions of the test in (2.11) and showed the consistency of

k̃∗n in the time series case. The performance of k̃∗n depends crucially on the selection of d and the complexity

of the break function δ. The use of the fully functional approach to dating break points is therefore especially

advantageous in the interesting case of breaks that are sizable but not obvious in the sense that their influence

does not show up in the directions of the leading principal components of the data.

This fact was noticed by Torgovitski (2016), who extended the detection procedures in two ways. First,

instead of using the spectral decomposition of the covariance operator K, his procedures are based on the

long-run covariance operator Cε and its eigenvalues λ1, . . . , λn and eigenfunctions φ1, . . . , φn. Second, an

alignment is introduced that shifts the detection procedure into the subspace of the potential break, the idea

being to significantly improve power, while not majorly compromising the level. The alignment is obtained

by modifying the first sample eigenfunction φ̂1 using

φ̃′1 =
φ̂1
nγ

+
ŝS̃n,k̃∗n√

n
, (2.13)

where γ ∈ (0, 1/2) is a tuning parameter and ŝ = sign〈φ̂1, S̃n,k̃∗n〉. Torgovitski (2016) then proposed to

replace φ̂1 with φ̂′1 = φ̃′1/‖φ̃′1‖ in the definition of (2.11), but did not introduce the corresponding break

dating procedure.

3 Implementation details

This section provides more information on the construction of confidence intervals as defined through Corol-

lary 2.1. To start, let Ξ̂ = inf{x : Q̂(x) = supx′∈R Q̂(x′)} be the sample version of Ξ, where Q̂ is an estimated

version of Q in (2.9) obtained by plugging in the natural estimators

θ̂ =
k̂∗n
n

and σ̂2 =

∫∫
Ĉε(t, t

′)
δ̂n(t)δ̂n(t′)

‖δ̂n‖2
dtdt′

in place of their respective population counterparts θ and σ as specified in Theorem 2.4, where

δ̂n =
1

n− k̂∗n

n∑
i=k̂∗n+1

Xi −
1

k̂∗n

k̂∗n∑
i=1

Xi,

and Ĉε an estimator of Cε. Since the latter quantity may arise from functional time series errors (εi : i ∈ Z),

the following lag-window estimator is used. Let

Ĉε(t, t
′) =

∞∑
`=−∞

wτ

(
`

h

)
γ̂`(t, t

′), (3.1)

9



where h is a bandwidth parameter satisfying h = h(n), and 1/h(n) + h(n)/n1/2 → 0 as n→∞,

γ̂`(t, t
′) =

1

n

∑
i∈I`

[
Xi(t)− X̄∗i (t)

] [
Xi+`(t

′)− X̄∗i+`(t′)
]
,

with I` = {1, . . . , n− `} if ` ≥ 0 and I` = {1− `, . . . , n} if ` < 0,

X̄∗j (t) =



1

k̂∗n

k̂∗n∑
i=1

Xi(t), 1 ≤ j ≤ k̂∗n,

1

n− k̂∗n

n∑
i=k̂∗n+1

Xi(t), k̂∗n + 1 ≤ j ≤ n,

and a symmetric weight function wτ with bounded support of order τ satisfying the standard conditions

wτ (0) = 1, wτ (u) = wτ (−u), wτ (u) ≤ 1, wτ (u) = 0 if |u| > m for some m > 0, wτ is continuous on

[−m,m], and

0 < lim
x→0

x−τ [1− wτ (x)] <∞. (3.2)

In order to show that the estimator Ĉε is consistent in L2[0, 1]2, a condition supplementary to the weak

dependence of the errors (εi : i ∈ Z) given in Assumption 2.1 is needed.

Assumption 3.1. For some p > 2, `(E[‖εi − εi,`‖p])1/p → 0 as `→∞.

Assumption 3.1 is not necessarily stronger than Assumption 2.1, although both are implied by the simple

condition that (E[‖εi−εi,`‖p])1/p = O(`−ρ) for some ρ > 1, which is by itself a fairly mild assumption. This

condition appears in Horváth et al. (2013). Let Ξ̂q denote the qth quantile of the distribution of Ξ̂.

Theorem 3.1. Under the conditions of Theorem 2.4 and Assumption 3.1, for α ∈ (0, 1), the random interval(
k̂∗n −

Ξ̂1−α/2

‖δ̂n‖2
, k̂∗n −

Ξ̂α/2

‖δ̂n‖2

)
is an asymptotic 1− α confidence interval for k∗.

Note that the construction of confidence intervals is aided by the use of the exact form of the maximizers

in the limit of Theorem 2.4 as derived in Bhattacharya and Brockwell (1976) and Stryhn (1996). Since σ2 and

σ̂2 are respectively bounded from above by λ1 and λ̂1, the largest eigenvalues of the integral operators with

kernels Cε and Ĉε, a conservative confidence interval is obtained by replacing σ̂2 with λ̂1.

4 Simulation Study

4.1 Setting

Following the construction of the data generating processes (DGP’s) in Aue et al. (2015), n functional data

objects were generated using D = 21 Fourier basis functions v1, . . . , vD on the unit interval [0, 1]. Without
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loss of generality, the initial mean curve µ in 2.1 is assumed to be the zero function. Independent curves were

then generated according to

ζi =

D∑
`=1

Ni,`v`,

where the Ni,` are independent normal random variables with standard deviations σ = (σ` : ` = 1, . . . , D)

used to mimic various decays for the eigenvalues of the covariance and long-run covariance operators. Three

distinct situations were entertained:

• Setting 1: the errors are finite dimensional, using σ` = 1 for ` = 1, 2, 3 and σ` = 0 for ` = 3, . . . , D;

• Setting 2: mimics a fast decay of eigenvalues, using σ = (3−` : ` = 1, . . . , D);

• Setting 3: mimics a slow decay of eigenvalues, using σ = (`−1 : ` = 1, . . . , D).

As innovations, independent curves εi = ζi, i = 1, . . . , n, were used. To explore the effect of temporal

dependence on the break point estimators, functional autoregressive curves were also considered, which are

widely used to model serial correlation of functional data, see Besse et al. (2000) and Antoniadis and Sapatinas

(2003). First-order functional autoregressions εi = Ψεi−1 + ζi, i = 1, . . . , n, were generated (using a burn-in

period of 100 initial curves that were discarded). The operator was set up as Ψ = κΨ0, where the random

operator Ψ0 is represented by a D×D matrix whose entries consist of independent, centered normal random

variables with standard deviations given by σσ′ as specified by Settings 1–3. A scaling was applied to achieve

‖Ψ0‖ = 1. The constant κ can then be used to adjust the strength of the temporal dependence. To ensure

stationarity of the time series, |κ| = 0.5 was selected.

To highlight the effect of the distribution of the break function across eigendirections as well as its size

relative to the noise level, the following arrangements were made. A class of break functions was studied

given by

δm =
1√
m

m∑
`=1

v`, m = 1, . . . , D, (4.1)

where the normalization ensures that all break functions have unit norm. Note that δ1 represents the case of a

break only in the leading eigendirection of the errors. On the other end of the spectrum is δD describing the

case of a break that affects all eigendirections uniformly. To relate break size to the natural fluctuations in the

innovations, the signal-to-noise ratio

SNR = c
θ(1− θ)‖δm‖2

tr(Cε)
,

was used, where θ denotes the relative location of the break date and Cε the long-run covariance operator of

the εi. (Note that ‖δm‖ = 1, so in the adopted formulation SNR does not depend on m.) Results are reported

choosing c to maintain a prescribed SNR.

11



Finally, in order to mitigate the effect of the particular shape of the Fourier basis functions and the ordering

v1, . . . , vD on the performance of the various procedures, a random permutation π was applied to 1, . . . , D

before each simulation run, and the experiment was performed as described above using the permuted ordering

vπ(1), . . . , vπ(D). Combining the previous paragraphs, functional curves yi = δ1{i > k∗}+ εi, i = 1, . . . , n,

according to (2.1) were generated for k∗ = bθnc with θ = 0 (null hypothesis), and θ = 0.25 and 0.5

(alternative). Both the fully functional procedure and its fPCA counterparts were applied to a variety of

settings, with outcomes reported in subsequent sections. All results are based on 1000 runs of the simulation

experiments. Additional complementary simulation evidence is presented in the online supplement.

4.2 Level and power of the detection procedures

In this section, the level and power of the proposed detection procedure are compared to the two fPCA based

methods introduced in Section 2.3. In particular, the fPCA-based detector (2.11) was run with three levels of

total variation explained (TVE), namely 85%, 90% and 95%. The change-aligned detection procedure (2.13)

was set up as in Torgovitski (2016). Critical values for the proposed fully functional detection procedure were

obtained through simulation from the limit distribution under the null hypothesis as provided in Theorem 2.1.

Table 4.1 provides the levels for the various detection procedures for the three settings of eigenvalue

decays, and iid and FAR(1) data generating processes. For the FAR(1) case, the long-run covariance operator

was estimated following the recommendations given in Rice and Shang (2016). The sample sizes under

consideration were n = 50 and n = 100. It can be seen that, even for these rather small to moderate sample

sizes, the proposed method kept levels reasonably well across all specifications. This is true to a lesser extent

also for the fPCA-based procedures, while the change-aligned version produced the most variable results.

The fPCA based procedures depend, by construction, more explicitly on the behavior of the eigenvalues with

levels well adjusted in case of a fast decay. The proposed procedure is fairly robust in all settings.

To examine the power of the detection procedures in finite samples, the break functions δm in (4.1) were

inserted as described in Section 4.1 with scalings c so that the SNR varied between 0, 0.1, 0.2, 0.3, 0.5, 1 and

1.5. The empirical rejection rates out of 1000 simulations for each test statistic described above are reported

as power curves in Figure 4.1 when the errors in (2.1) are iid and distributed according to each of Settings 1,

2, and 3. The sample size in the figure is n = 50 and the number of components m in the break functions

δm are 1, 5, and 20. Further simulation evidence is provided in the online supplement. The findings of these

simulations can be summarized as follows:

• The change aligned test of Torgovitski (2016) was usually outperformed by both the fPCA and fully

functional methods for most of the DGP’s and sample sizes under consideration.

• The power for the fully functional detection procedure was observed to improve as m increased, as

predicted by the theory. Moreover, when the change was largely orthogonal to the errors, as in Setting

12



Setting DGP n Proposed TVE 85% TVE 90% TVE 95% Aligned
1 iid 50 0.07 0.02 0.04 0.03 0.02

100 0.07 0.07 0.06 0.06 0.05
FAR(1) 50 0.05 0.03 0.03 0.02 0.00

100 0.06 0.07 0.06 0.07 0.02
2 iid 50 0.05 0.06 0.06 0.06 0.09

100 0.06 0.08 0.08 0.07 0.05
FAR(1) 50 0.05 0.04 0.04 0.05 0.11

100 0.07 0.04 0.05 0.04 0.05
3 iid 50 0.04 0.02 0.03 0.00 0.00

100 0.05 0.05 0.03 0.02 0.01
FAR(1) 50 0.03 0.01 0.03 0.00 0.00

100 0.03 0.01 0.02 0.03 0.00

Table 4.1: Empirical sizes for the various detection procedures for two data generation processes. The nominal
level was α = 0.05.

1 with m = 20, the expected advantage of the fully functional method over the dimension reduction

based approaches materialized.

• A particularly interesting example to examine is when m = 1 under Setting 3 (with slowly decaying

eigenvalues). One notices in this case that, although the change lied fully in the direction of the leading

principal component of the errors, the fPCA based methods were outperformed by the fully functional

method, and additionally their performance decayed as TVE increased. Here, the slow decay of eigen-

values adversely affects the fPCA procedure. This contrasts, for example, with the case when m = 20

under Setting 2 (with fast decaying eigenvalues), when the fPCA method improved as TVE increased,

and ultimately outperformed the fully functional method. This demonstrates that the fPCA method is

not guaranteed to beat the proposed detection procedure even when the break is in the leading eigendi-

rection. Moreover, this particular case highlights the fact that increasing TVE may not always lead to

improved performance. Note also that this example seems to match well with the situation encountered

in an application to Australian temperature curves presented in Section 5.

• In additional simulations reported in the online supplement, the expected improvement in power when

n increased was noticed. Additionally, no more power loss than is typical was observed when the model

errors are serially correlated rather than independent and identically distributed.

4.3 Performance of the break dating procedures

In order to study the empirical properties of the break date estimator k̂∗n, the break functions δm specified

in(4.1) of Section 4.1 were utilized again with scaling c chosen to yield SNR values of 0.5 and 1. The break

date was inserted at θ = 0.25, so that the samples before and after the break have a ratio of 1 to 3. As in the
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Figure 4.1: Power curves for the various break detection procedures for three different forms of the break
functions indexed my m and the three eigenvalues settings for n = 50 and independent errors. The x-axis
gives different choices of SNR. Observe that “FF” refers to the proposed fully functional method, “0.85”,
“0.90“ and “0.95“ correspond to the three levels of TVE in the fPCA procedures, and “Aligned” to the method
of Torgovitski (2016).

previous section, focus is on the small sample size n = 50. The results from additional settings are reported

in the online supplement. For each setting and choice of m, the estimators k̂∗n and k̃∗n for k∗ were computed

for the proposed and the fPCA methods, respectively in 1000 independent simulation runs. The results are

summarized in the form of box plots in Figure 4.2.

Overall, the proposed method is observed to be competitive, with box plots being narrower or of the same

width as those constructed from the fPCA counterparts. It can be seen that the accuracy of the fully functional

break date procedure improved for increasing m, spreading the break across a larger number of directions.

As expected, the performance of the fPCA procedure was sensitive to the choice of TVE, in a way that often

only the best selection of TVE was competitive with the fully functional method. Moreover, in analogy to

the same phenomenon observed in the power study, the fully functional enjoys an advantage when the break

loads entirely on the first eigenfunction (m = 1) for slowly decaying eigenvalues of the covariance operator
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SNR =  0.5

m = 1

SNR =  0.5

m = 5

SNR =  0.5

m = 20

SNR =  1

m = 1

SNR =  1

m = 5

SNR =  1

m = 20

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●
●
●
●

●
●

●

●

●

●●

●

●
●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●
●
●

●
●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●
●
●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●
●
●

●

●
●●

●

●
●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●
●
●
●

●

●
●
●

●

●

●●

●
●
●

●
●

●
●

●

●
●
●

●
●
●
●

●
●
●
●

●
●●
●

●

●

●●
●
●

●

●
●

●
●
●
●●
●
●●●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●
●

●●

●
●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●
●

●●●

●

●
●
●

●

●

●

●

●●

●●
●

●
●

●●

●
●
●

●
●

●

●

●

●

●
●
●
●

●
●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●
●
●
●
●

●

●
●

●●●

●

●
●
●

●

●

●

●

●●

●●
●

●
●

●●

●
●
●

●
●

●

●

●

●

●
●
●
●

●
●

●

●
●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●●●

●

●
●
●

●

●

●

●

●●

●
●
●

●
●

●●

●
●●
●
●

●

●

●

●

●
●
●
●

●

●

●
●

●

●●
●

●●

●●
●
●

●●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●
●●●

●
●

●●

●
●
●
●
●

●

●
●

●

●

●

●

●

●
●
●

●
●
●
●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●

●●●●●●●

●
●

●
●

●

●

●●●

●
●
●

●

●
●●
●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●
●
●
●●
●
●
●●●●

●

●
●
●
●

●

●●
●
●
●

●●

●

●

●

●
●
●
●
●
●

●

●
●

●

●

●
●
●
●
●

●

●

●

●
●
●●
●
●
●
●●
●
●
●●
●
●●

●

●
●
●
●
●
●
●

●
●
●

●
●
●●
●
●●
●
●

●

●●
●
●●
●

●●
●
●

●

●
●

●

●

●

●
●●
●●●

●

●

●

●●
●●
●
●
●
●
●
●

●

●
●

●
●
●
●

●

●

●
●
●
●

●
●

●●

●

●
●
●

●●
●●

●

●●

●
●
●
●
●
●
●
●
●

●

●
●

●
●●
●

●

●

●

●

●

●

●●

●
●
●
●

●

●

●
●
●

●

●●
●●
●

●
●

●

●

●
●
●●

●
●

●

●
●●
●

●
●

●

●
●
●
●●
●

●●

●
●
●
●

●

●
●
●
●

●

●●●●●
●
●
●
●

●
●
●

●

●

●

●
●
●
●
●●
●

●

●
●
●

●
●●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●●
●
●
●
●●

●

●
●
●

●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●
●
●
●
●●

●

●
●

●
●
●

●
●

●
●
●●●
●●
●●

●

●●●

●

●

●
●
●

●

●

●●

●

●

●

●●

●
●
●
●●●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●
●
●
●
●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

●

●
●
●

●
●

●
●

●

●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●
●
●●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●

●
●
●●
●

●

●

●

●

●

●
●
●
●●●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●
●
●●

●
●
●

●

●

●
●
●●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●
●
●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●
●
●
●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●●
●●●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●●
●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●
●●
●
●●●●●●●●●●●●●●●
●
●●●
●
●●●
●●
●●●●●●●●●●●●●●●●●●●
●
●
●●
●
●
●●
●●
●
●●●●●●

●

●●

●

●
●
●
●●
●
●
●
●
●
●
●
●●●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
● ●●●●●●

●
●
●
●
●
●●●
●
●●●●●

●

●●●●
●
●●

●

●●●
●
●

●

●
●●
●●
●
●
●●●●●●●●●●●●
●
●
●●
●●
●
●●●●●●●●
●
●

●
●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●
●
●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●
●

●
●●
●

●
●

●
●

●
●
●

●

●●
●

●

●
●

●

●

●

●●

●

●

●

●●
●
●

●

●
●
●
●

●

●
●

●

●

●
●
●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●

●

●
●●
●●
●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●
●●
●
●

●

●

●
●
● ●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●

●

●
●●
●●
●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●
●●
●
●

●

●

●
●
● ●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●

●

●
●●
●●
●
●

●

●

●

●

●
●
●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●
●
●●
●
●

●

●

●
●
●

●

●
●

●

●

●
●
●

●

●●●

●

●
●

●

●

●
●
●
●

●
●
●●

●

●

●

●
●

●
●

●
●
●●
●

●

●●

●
●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●
●

●

●

●

●

●

●

●
●
●
●

●●
●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●
●

●●
●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●
●

●●
●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●
●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●●
●
●●
●

●

●●

●●
●
●

●
●
●

●

●

●●

●
●
●
●
●

●●
●●
●

●

●●
●●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●
●

●
●

●
●
●
●
●
●●

●

●

●●

●

●
●
●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●
●

●
●
●●
●
●
●●

●

●
●
●●
●

●

●●
●

●

●
●

●

●●

●
●
●●
●
●

●

●

●
●●

●

●
●

●●

●●●
●

●

●

●

●

●

●●

●
●

●
●
●

●●
●
●
●
●●
●
●
●

●

●●
●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●
●
●●

●

●

●
●

●

●

●●

●

●

●
●
●
●
●

●

●

●

●
●
●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●
●
●
●

●

●

●

●
●
●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●
●
●

●
●

●
●
●

●

●

●●

●

●
●
●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●●
●
●

●

●
●

●

●
●

●
●●

●

●

●

●

●
●
●
●
●

●
●
●

●
●●
●

●

●
●
●
●
●
●
●●

●

●

●
●
●
●●●●
●

●
●

●

●

●●●

●

●●
●
●
●●●
●●
●

●

●
●

●

●

●
●
●

●

●
●
●●●

●
●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●

●

●
●

●

●
●
●
●●●

●
●
●
●

●

●

●

●

●●

●
●
●

●

●
●
●
●

●●●

●

●

●

●●
●
●
●
●
●

●

●

●
●
●

●
●
●
●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●●●
●
●●

●

●
●

●

●
●●●
●

●
●
●

●●

●●

●

●
●●

●

●

●
●●
●●●●●●●
●

●
●●
●●
●●
●

●
●●
●●●●●●●
●

●
●●
●●
●●
●

●

●

●

●

●
●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●
●●●

●

●

●
●
●
●●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●
●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●
●
●

●
●
●●
●

●

●

●

●
●
●●●
●
●

●
●
●

●

●

●

●
●
●

●

●
●●

●
●

●
●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●●
●
●
●●
●
●

●
●
●
●
●
●
●
●●●

●

●

●

●

●
●
●

●●
●

●●●

●

●

●
●

●
●

●●
●
●
●

●●

●

●
●
●●
●
●●●●●
●
●●
●●
●
●●

●

●●
●
●

●

●
●
●
●
●
●

●
●

●●
●

●

●

●

●
●
●●
●

●
●

●

●
●
●
●
●●
●
●
●

●●
●●

●
●
●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●
●●●
●
●
●
●
●
●
●●
●●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●
●●
●●

●

●
●

●
●
●
●
●

●●

●

●

●

●●●

●

●

●●

●
●
●

●●●●
●
●

●

●●

●

●
●
●

●

●
●
●

●

●

●●
●●

●
●

●

●

●

●

●
●●
●●
●●
●
●

●
●
●
●

●

●

●

●
●

●
●
●●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●●

●●

●

●

●

●

●

●

●●
●
●
●
●
●
●
●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●

●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●●

●●●
●

●

●
●
●●

●

●●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●●
●
●
●

●

●

●
●

●

●
●

●

●
●
●
●

●●
●
●
●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●
●●
●
●
●

●

●

●
●

●

●
●

●

●
●
●
●

●●
●
●
●
●

●
●

●
●

●

●

●
●●

●
●
●

●●

●

●

●●●●●
●
●
●
●●

●

●

●

●

●

●

●

●

●●●●
●
●

●

●●●
●

●

●

●

●●●

●
●

●
●
●

●
●
●

●
●

●

●
●
●

●
●
●●●●●●●●
●●
●●
●
●
●●
●
●
●
●

●
●

●●
●
●
●
●●●●●
●
●

●

●●

●

●●●
●
●

●

●
●

●

●●
●
●

●

●●
●●
●●●●

●

●
●

●
●●●
●●
●
●

●

●
●

●

●●

●

●●
●●
●
●
●
●●
●●
●
●●●

●
●
●
●

●

●

●

●
●
●
●
●
●
●●●
●

●

●●
●
●●

●
●
●●
●

●
●
●
●●
●
●●●●●●●●●●●
●
●
●
●
●
●
●
●
●●
●
●●
●

●

●
●
●

●

●
●

●●●●
●
●

●●

●

●●●
●●
●
●
●●●
●

●

●
●●

●

●●●●
●
●●●●
●
●●●
●
●●●
●
●
●

●
●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●
●●
●

●

●
●

●

●●●

●

●

●
●

●●

●
●

●●●

●

●

●
●

●

●

●●

●

●

●
●

●
●
●

●
●
●

●

●

●

●
●

●

●
●
●
●
●
●
●●

●
●
●●
●
●

●

●
●

●

●

●

●
●

●

●
●●
●

●
●●

●

●
●

●

●

●
●
●
●
●

●

●
●
●

●

●

●

●

●●
●
●●

●
●
●

●

●●
●

●

●

●

●

●

●
●

●
●
●●
●
●
●

●
●

●

●

●
●
●
●

●
●

●

●●●●
●
●●
●●

●

●●●●●●●●●
●
●
●●●●●●●
●
●●●

●

●●
●
●
●●
●●●●●●●●
●●
●●●●●●●●●●
●●
●●
●
●●●●●●●● ●●●●

●
●●
●
●●●●
●
●●●●●
●
●●●●●●●●●●●●●● ●●

●●
●●●●●●●●●●●●
●
●
●●
●●
●
●●●●●●●

●

●●●●●
●
●
●
●
●●

●

●●

●

●

●

●●
●
●

●

●
●●

●

●●
●
●●

●

●

●

●

●

●
●●
●
●
●
●

●

●

●●●●●●

●

●●
●
●
●
●
●
●

●
●

●

●
●
●

●

●
●
●
●
●
●
●

●

●

●
●
●●●●

●

●
●●
●●
●

●

●●

●

●

●
●

●
●

●●●●
●
●
●
●●

●

●

●

●

●
●

●●●●
●
●●
●
●

●

●
●

●

●●

●

●
●
●

●
●●●●●
●
●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●

●●
●
●

●

●●●
●
●

●●●●●●

●

●
●
●
●●
●

●

●

●
●
●
●

●
●

●
●
●

●

●●
●
●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●
●●
●
●

●●

●
●
●●

●

●●

●

●

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
etting 1

S
etting 2

S
etting 3

0.
85

0.
90

0.
95 F
F

0.
85

0.
90

0.
95 F
F

0.
85

0.
90

0.
95 F
F

0.
85

0.
90

0.
95 F
F

0.
85

0.
90

0.
95 F
F

0.
85

0.
90

0.
95 F
F

Figure 4.2: Boxplots for the various break dating procedures for three different forms of the break functions
indexed mym and two choices of SNR for the three eigenvalues settings, sample size n = 50 and independent
errors. Labeling of the procedures is as in Figure 4.1.

The confidence intervals computed from Theorem 3.1 are seen to be conservative. As already pointed out

after Corollary 2.10, this is due to the fact, that they are based on an asymptotic analysis assuming a shrinking

break. For illustration purposes, since this will prove relevant in Section 5, Figure 4.3 gives 95% confidence

intervals for the case of Setting 3 with independent errors and sample size n = 100. The break function δm

is inserted in the middle (θ = 0.5), using m = 1, 5 and 20 as before. The plots provide further evidence for

the theory, as the confidence intervals get significantly narrower when the break function is distributed across

a larger number of directions. The case m = 1 leads to the widest confidence intervals, which for this case

are of little practical relevance. Larger sample sizes and higher SNR lead to the expected improvements, but

are not shown here to conserve space. To improve the width of the confidence intervals for small sample sizes

and/or small SNR’s, one might entertain some jackknife or bootstrap modifications. This might be pursued in

detail elsewhere.
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Figure 4.3: Confidence intervals constructed from the fully functional break dating procedure across 1000
simulation runs for Setting 3, sample size n = 100, and three types of break functions indexed by m with
SNR set to 0.5. For each run, the blue line gives the 95% confidence interval and the red dot the estimated
break date.

4.4 Heavy tails

The heavy tail case is only considered for independent curves in Settings 2 with fast decay of eigenvalues

of the innovations and break function specified by δm in (4.1) with m = 1, 5 and 20 as before. Settings 1

and 3 produce results more in favor of the proposed method. Instead of the normal distributions specified in

Section 4.1, ζ1, . . . , ζn were chosen to be t-distributed with 2, 3 and 4 degrees of freedom and ε1, . . . , ε100

were defined accordingly. Modifications of the simulation settings presented in this section could potentially

be useful for applications to intra-day financial data such as the Microsoft intra-day return data presented as

part of the online supplement. Due to the reduced number of finite moments in this setting, the fPCA based

procedure is not theoretically justified.

Results in Figure 4.4 are given for n = 100, k∗ = 50. The summary statistics show the proposed method

to be superior in all cases. The proposed method looks in general more favorable in the heavy-tail case than in

the time series case of the previous section due to the deteriorated performance in estimating eigenvalues and

eigenfunctions. It can be seen that in all cases the fPCA based procedure fails to produce reasonable results.

The performance is worst for df = 2 and somewhat comparable for df = 3 and df = 4. The proposed method

is seen to work for the latter two cases but its performance deteriorates somewhat for df = 2, a situation that

is not theoretically justified.
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Figure 4.4: Boxplots for the various break dating procedures for three different forms of the break functions
indexed my m and t-distributed innovations with 2, 3 and 4 degrees of freedom for Setting 2, sample size
n = 100, k∗ = 50 and independent errors. Labeling of the procedures is as in Figure 4.1.

5 Application to annual temperature curves

In this section, the proposed methodology is applied to annual temperature curves from eight measuring

stations in Australia. More precisely, the raw data consists of 365 (366) daily measurements of minimum

temperatures that were converted into functional objects using 21 Fourier basis functions. The observations

for each of the eight stations are recorded over different time spans, roughly equaling 100 years. The data

may be downloaded from The Australian Bureau of Meteorology at the URL www.bom.gov.au. For each

case, the fully functional break detection procedure rejected the null hypothesis of no structural break in the

mean function. Consequently, both functional break dating procedure and fPCA counterpart were applied to

locate the time of the mean break. Information on all stations under consideration is provided in Table 5.1.

More details may be found in the online supplement. It should be noted that a similar temperature series was

discussed in Fremdt et al. (2014) in the context of increasing the number of projections utilized for the fPCA

analysis.

In the following the station Gayndah Post Office is singled out and discussed in more detail. The time

series plot of n = 116 annual curves recorded in degree Celsius at this station from 1893 to 2009 are given

in the upper left panel of Figure 5.1. They exhibit the temperature profile typical for Australia, with higher
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Station Range k̂∗n (year) CI (years) Range of k̃∗n (year)
Sydney (Observatory Hill) 1959–2012 1991 (1981, 1994) 1983, 1991
Melbourne (Regional Office) 1855–2012 1998 (1989, 2000) 1996, 1998
Boulia Airport 1888–2012 1978 (1954, 1981) 1978
Cape Otway Lighthouse 1864–2012 1999 (1949, 2005) 1999, 2000
Gayndah Post Office 1893–2009 1962 (1952, 1966) 1953, 1962, 1968
Gunnedah Pool 1876–2011 1985 (1935, 1992) 1979, 1984, 1985, 1986
Hobart (Ellerslie Road) 1882–2011 1966 (1957, 1969) 1966, 1967, 1968, 1969
Robe Comparison 1884–2011 1981 (1954, 1985) 1969, 1974, 1981

Table 5.1: Summary of results for eight Australian measuring stations. The column labeled k̂∗n reports the
estimated break date using the fully functional method, CI gives the corresponding 95% confidence interval.
This is contrasted with the range of break date estimates obtained from using fPCA methods with dimension
of the projection space d = 1, . . . , 10. The year in bold is the most frequently chosen break date.

temperatures in the beginning and end of the year. The corresponding scree plot of sample eigenvalues in the

upper right panel of the same figure indicates a slow decay, which Setting 3 in Section 4 sought to mimic. The

p-value of the fully functional detection procedure for this station was 0.008. Table 5.1 reports the break date

estimate for the fully functional procedure as 1962 and gives a 95% confidence interval spanning the years

from 1952 to 1966. In the range considered, the fPCA procedure chose three different years as break dates,

namely 1953 (corresponding to d = 1 and TVE = 0.40), 1962 (for d = 3 and TVE = 0.62), and 1968 (for

all other choices of d with TVE reaching 0.92 at d = 10). It can therefore be seen that, for any reasonable

choice of TVE, the fPCA break date estimate leads to a year that is not included in the 95% confidence

interval obtained from the fully functional methodology, even those were shown to be conservative in Section

4. The estimated break function is displayed in the middle panel of Figure 5.1. Almost 90% of the variation

in ‖δ̂‖ is explained by the first sample eigenfunction, with a rapid decay of contributions from higher sample

eigenfunctions. This is displayed in the middle panel of Figure 5.1. The situation is therefore indeed similar

to the case displayed in the lower left panels of Figures 4.1 and 4.2, which corresponds to slow decay of

eigenfunctions and a break occurring predominantly in the direction of the first mode of variation. That this is

a situation beneficial to the proposed procedure is further highlighted in the lower panel of Figure 5.1. Here

it can be seen that the estimated SNR of the sample break function decreases significantly with the inclusion

of further sample eigenvalues and eigenfunctions into the analysis. In particular, the estimated SNR’s are, for

d > 1, noticeably smaller than the estimated SNR obtained from the fully functional procedure.

The application shows that, while both fully functional and fPCA procedures often work similarly in

practice, there are cases when they differ substantially. In the situation discussed in this section, there is

evidence to believe that the fully functional method is perhaps more trustworthy. The results of the data
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Figure 5.1: Upper panel: Time series plot of annual temperature profiles at Gayndah Post Office (left) and
scree plot of eigenvalues from the sample covariance operator of the Gayndah Post Office temperature profiles
(right). Middle panel: Estimated break function δ̂ (left) and proportion of variation in ‖δ̂‖ explained by the `th
sample eigenfunction (right). Lower panel: Estimated SNR for the fully functional procedure (straight line)
and for the fPCA procedure across varying d.
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application used in combination with the simulation analysis show that one can do worse than the proposed

procedure but not obviously better.

6 Conclusions

In this paper, a fully functional methodology was introduced to detect and date mean curve breaks for func-

tional data. The assumptions made allow for time series specifications of the curves and are formulated using

the optimal rates for approximations of the data with `-dependent sequences. The assumptions are notably

weaker than those usually made in the fPCA context and include heavy-tailed functional observations, making

the asymptotic theory developed here widely applicable. In a comprehensive simulation study it is shown that

the fully functional method tends to perform better than its fPCA counterpart, with significant performance

gains for breaks that do not align well with the directions specified by the largest (few) eigenvalue(s) of the

data covariance operator, but also in a number of subtler situations such as breaks concentrated on the first

eigendirection with slowly decaying eigenvalues. It is shown in an application to annual temperature curves

that the latter situation can be of practical relevance. It is hoped that the proposed methodology will find

widespread use in the future. More generally, this work provides an in-depth study in a specific context of the

overarching principle that whenever the signal of interest is not dominant or is “sparse”, in the sense that it

is not entirely contained in the leading principal components, then alternatives to dimension reduction based

methods should be considered and are likely more effective.
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[19] Hörmann, S. & P. Kokoszka (2010). Weakly dependent functional data. The Annals of Statistics 38,

1845–1884.
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[21] Horváth, L. Kokoszka, P. & G. Rice (2014). Testing stationarity of functional time series. Journal of

Econometrics 179, 66–82.
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