Selecting the Number of Functional Principal Components

For selecting the number K of functional principal components (FPCs) in the PACE program, one may use the input argument selection_ k in the function setOptions().

1 Automatic Selection of Number K of Functional Principal Components

(1) Pseudo-AIC or Pseudo-BIC criteria:

Let $Y_{i j}$ be the j th observation of the random function $X_{i}(\cdot)$, made at a random time $T_{i j}$ and $\varepsilon_{i j}$ the additional measurement errors that are assumed to be i.i.d. and independent of the random coefficients $\xi_{i k}$, where $i=1, \ldots, n, j=1, \ldots, n_{i}, k=1,2, \ldots$. Then the model we consider is

$$
Y_{i j}=X_{i}\left(T_{i j}\right)+\varepsilon_{i j}=\mu\left(T_{i j}\right)+\sum_{k=1}^{\infty} \xi_{i k} \phi_{k}\left(T_{i j}\right)+\varepsilon_{i j}, \quad T_{i j} \in \mathcal{T},
$$

where $\mathrm{E} \varepsilon_{i j}=0, \operatorname{var}\left(\varepsilon_{i j}\right)=\sigma^{2}$.
Write $\widetilde{\mathbf{X}}_{i}=\left(X_{i}\left(T_{i 1}\right), \ldots, X_{i}\left(T_{i n_{i}}\right)\right)^{T}, \widetilde{\mathbf{Y}}_{i}=\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)^{T}, \boldsymbol{\mu}_{i}=\left(\mu\left(T_{i 1}\right), \ldots, \mu\left(T_{i n_{i}}\right)\right)^{T}, \boldsymbol{\phi}_{i k}=$ $\left(\phi_{k}\left(T_{i 1}\right), \ldots, \phi_{k}\left(T_{i n_{i}}\right)\right)^{T}$.
(i) Estimated marginal pseudo-Gaussian log-likelihood of $\tilde{\mathbf{Y}}_{i}$:

$$
\hat{L}_{1}=\sum_{i=1}^{n}\left\{-\frac{n_{i}}{2} \log (2 \pi)-\frac{1}{2} \log \left(\operatorname{det} \hat{\Sigma}_{Y_{i}}\right)-\frac{1}{2}\left(\tilde{\mathbf{Y}}_{i}-\hat{\boldsymbol{\mu}}_{i}\right)^{T} \hat{\Sigma}_{Y_{i}}^{-1}\left(\widetilde{\mathbf{Y}}_{i}-\hat{\boldsymbol{\mu}}_{i}\right)\right\}
$$

where the (j, l) element of $\left(\hat{\Sigma}_{Y_{i}}\right)_{j, l}=\hat{G}\left(T_{i j}, T_{i l}\right)+\hat{\sigma}^{2} \delta_{j l}$ and $\hat{G}\left(T_{i j}, T_{i l}\right)=$ $\sum_{k=1}^{K} \hat{\lambda}_{k} \hat{\phi}_{k}\left(T_{i j}\right) \hat{\phi}_{k}\left(T_{i l}\right)$.
The marginal criteria are $A I C_{1}(K)=-2 \hat{L}_{1}+2 K$ and $B I C_{1}(K)=-2 \hat{L}_{1}+K \log (N)$, where $N=\sum_{i=1}^{n} n_{i}$, and the marginal choices are the minimizers over K.
In the PACE program, these choices are obtained via selection_ $k=$ 'AIC1' and selection_ k $=$ 'BIC1', respectively.
(ii) Estimated conditional pseudo-Gaussian log-likelihood of $\widetilde{\mathbf{Y}}_{i} \mid \hat{\xi}_{i k}$:

$$
\hat{L}_{2}=\sum_{i=1}^{n}\left\{-\frac{n_{i}}{2} \log (2 \pi)-\frac{n_{i}}{2} \log \hat{\sigma}^{2}-\frac{1}{2 \hat{\sigma}^{2}}\left(\widetilde{\mathbf{Y}}_{i}-\hat{\boldsymbol{\mu}}_{i}-\sum_{k=1}^{K} \hat{\xi}_{i k} \hat{\boldsymbol{\phi}}_{i k}\right)^{T}\left(\widetilde{\mathbf{Y}}_{i}-\hat{\boldsymbol{\mu}}_{i}-\sum_{k=1}^{K} \hat{\xi}_{i k} \hat{\boldsymbol{\phi}}_{i k}\right)\right\}
$$

The corresponding conditional criteria are $A I C_{2}(K)=-2 \hat{L}_{2}+2 K$ and $B I C_{2}(K)=$ $-2 \hat{L}_{2}+K \log (N)$, where $N=\sum_{i=1}^{n} n_{i}$, and the corresponding conditional choices are
obtained as the minimizing values of K, obtained via selection_ $k=$ 'AIC2' and selection_ k $={ }^{\text {'BIC }} 2$ ', respectively.

Note: The marginal choices often lead to selections of smaller values of K and are often preferrable in practical applications.

(2) Fraction of Variance Explained (FVE):

The fraction of variance explained (FVE) is calculated as

$$
F V E_{J}=\frac{\sum_{k=1}^{J} \hat{\lambda}_{k}}{\sum_{k=1}^{n g r i d} \hat{\lambda}_{k}}, \quad J=1, \ldots, \text { ngrid }
$$

where $n g r i d \times n g r i d$ is the dimension of the discretized smoothed covariance matrix which serves as input for the numerical matrix spectral decomposition from which FPCS and eigenvalues are derived. When selection_k = 'FVE', the number K of included FPCs corresponds to the smallest J for which $F V E_{J}>F V E_{-} t h r e s h o l d$. The default for $F V E_{-}$threshold is $F V E_{-}$threshold $=0.85$. This setting provides the overall default for selecting K as it is fast and usually yields reasonable results. The return value $F V E$ is the array of values of $F V E_{J}$.

2 User-defined Number of Included Functional Principal Components

Simply set selection_ k to a positive integer that is no greater than ngrid.

