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Let Yij be the jth observation of the random function Xi(·), made at a random time Tij and

εij the additional measurement errors that are assumed to be i.i.d. and independent of the random

coefficients (FPC scores) ξik, where i = 1, . . . , n, j = 1, . . . , ni, k = 1, 2, . . .. Then the model we

consider is

Yij = Xi(Tij) + εij = µ(Tij) +
∞∑

k=1

ξikφk(Tij) + εij , Tij ∈ T ,

where Eεij = 0, var(εij) = σ2.

Write X̃i = (Xi(Ti1), . . . , Xi(Tini))
T , Ỹi = (Yi1, . . . , Yini)

T , µi = (µ(Ti1), . . . , µ(Tini))
T , φik =

(φk(Ti1), . . . , φk(Tini))
T . Yao et al. (2005) proposed to estimate the ξik through conditional expec-

tation by assuming ξik and εij are jointly Gaussian, that is,

ξ̂ik = Ê[ξik|Ỹi] = λ̂kφ̂
T

ikΣ̂
−1
Yi

(Ỹi − µ̂i) (1)

where the (j, l) element of (Σ̂Yi)j,l = Ĝ(Tij , Til) + σ̂2δjl and Ĝ(Tij , Til) =
∑K

k=1 λ̂kφ̂k(Tij)φ̂k(Til).

When Σ̂Yi is close to numerically singular, the resulting ξ̂ik can be highly unstable due to the

difficulty in the inversion. In PACE 2.5, we apply truncation related to ridge regression to stabilize

the inversion of Σ̂Yi , which leads to stable estimates of ξ̂ik. The idea of this approach is to truncate

small values of σ̂2 used in (1) implicitly and set them equal to a positive threshold value.

The algorithm for the implementation of this approach is as follows:

Step 1: Compute residual sum of squares:

σ̂2
new,1 =

1
n

n∑
i=1

1
ni

ni∑
j=1

(Yij − Ŷij)2,

where Ŷij = µ̂(Tij) +
∑K

k=1 ξ̂ikφ̂k(Tij). Here, the estimation of ξik is based on (1) and σ̂2 in

(Σ̂Yi)j,l is based on (2) in Yao et al. (2005).

Step 2: Repeat Step 1 and compute a new residual sum of squares:

σ̂2
new,2 =

1
n

n∑
i=1

1
ni

ni∑
j=1

(Yij − Ŷijnew)2,

where Ŷijnew differs from Ŷij in the estimation of ξik, as it involves σ̂new,1 in (Σ̂Yi)j,l instead of

σ̂2.
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Step 3: Reset the value of σ̂2
new,2 to some ρ, if σ̂2

new,2 < ρ. Three choices for this truncation step

are avaiable in PACE 2.5:

Choice ρ = −1: compute unadjusted FPC scores the same way as previous PACE versions;

Choice ρ > 0: user-defined choice of ρ;

Choice ρ = 0: do not restrict the σ̂2
new,2. Since σ̂2

new,2 is always non-negative, when ρ is set to

be zero, this corresponds to omitting the truncation step;

Choice ρ =‘cv’: use randomized leave-one-measurement-out CV approach to find the optimal

value of ρ (default choice). The grid of truncation threshold ρ is tied to a measure of the

overal signal size γ, given by

γ =

[
E

1
|T |

∫
T
{µ(t) +

K∑
k=1

ξkφk(t)}2dt

] 1
2

=
1

|T |
1
2

[∫
T
{µ2(t) +

K∑
k=1

λkφ
2
k(t)}dt

] 1
2

=
1

|T |
1
2

[
{
∫
T

µ2(t)dt +
K∑

k=1

λk}

] 1
2

Then define ρl = αlγ for l = 1, . . . , r, where αl is some positive constant that is used

to create an array of data-dependent candidate choices of ρ. In the program, we set

α ∈ [0.01, 0.225], for r = 50 equidistant grid points. Define the set J = {i : ni ≥ 2} and

ρopt = argmin
ρ1,...,ρr

CV (ρl) =
∑
i∈J

(
Yij − µ̂(Tij) −

K∑
k=1

ξ̂
(−j)
ik φ̂k(Tij)

)2

.

Here, for subject i, we randomly select one observation (Tij , Yij) which is then left out

from the sample for this subject, and then re-estimate the FPC scores using (1) with the

constraint that one resets σ̂2
new,2 = ρl if σ̂2

new,2 < ρl.

Step 4: Estimate ξik using (1) with the updated σ̂2
new,2 for (Σ̂Yi)j,l.
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