Supplemental materials to "Global Testing Against Sparse Alternatives in Time-Frequency Analysis"

0.1. Proof of Lemmas 5.2.

Proof. Since the density of z is $\frac{1}{\pi} e^{-|z|^{2}}$, we have

$$
\bar{\Psi}(t)=\int_{|z|>t} \frac{1}{\pi} e^{-|z|^{2}} d A
$$

where $d A$ is the Lebesgue measure on the z-plane. In other words, if $z=$ $x+i y$, then $d A=d x d y$. By applying the polar coordinates $z=r e^{i \theta}$, we have

$$
\bar{\Psi}(t)=\int_{0}^{2 \pi} \int_{t}^{\infty} \frac{1}{\pi} e^{-r^{2}} r d r d \theta=\int_{t}^{\infty} 2 r e^{-r^{2}} d r=e^{-t^{2}}
$$

To prove (5.1), define $u \in \mathbb{C}$ satisfying $|u|=1$ and $\bar{u} \mu=|\mu|$. This unit complex scalar always exists since we can let $u=\frac{\mu}{|\mu|}$ when $\mu \neq 0$, and any unit scalar when $\mu=0$. Notice that
$\Re(\bar{u} z)>t-|\mu| \Longrightarrow \Re(\bar{u} z)+|\mu|>t \Longrightarrow \Re(\bar{u}(z+\mu))>t \Longrightarrow|z+\mu|>t$, and hence

$$
\mathbb{P}(|z+\mu|>t) \geq \mathbb{P}(\Re(\bar{u} z)>t-|\mu|) .
$$

Since

$$
z \sim \mathcal{C N}(0,1,0) \Longrightarrow \bar{u} z \sim \mathcal{C N}(0,1,0) \Longrightarrow \Re(\bar{u} z) \sim \mathcal{N}\left(0, \frac{1}{2}\right)
$$

by the tail probability of standard real-valued normal variable we have

$$
\mathbb{P}(\Re(\bar{u} z)>t-|\mu|) \geq \frac{C_{0}}{1+(t-|\mu|)_{+}} e^{-(t-|\mu|)_{+}^{2}} .
$$

Moreover,

$$
\mathbb{P}(|\mu+z|>t) \leq \mathbb{P}(|z|>t-|\mu|) \leq e^{-(t-|\mu|)_{+}^{2}} .
$$

0.2. Proof of Lemma 5.3.

Proof. Simple calculation yields
$\operatorname{Cov}\left(1_{\left\{\left|w_{1}-a_{1}\right|>t\right\}}, 1_{\left\{\left|w_{2}-a_{2}\right|>t\right\}}\right)=\mathbb{P}\left(\left|w_{1}-a_{1}\right|>t,\left|w_{2}-a_{2}\right|>t\right)-\mathbb{P}\left(\left|w_{1}-a_{1}\right|>t\right) \mathbb{P}\left(\left|w_{2}-a_{2}\right|>t\right)$.

This implies

$$
\begin{aligned}
\operatorname{Cov}\left(1_{\left\{\left|w_{1}-a_{1}\right|>t\right\}}, 1_{\left\{\left|w_{2}-a_{2}\right|>t\right\}}\right) & \leq \mathbb{P}\left(\left|w_{1}-a_{1}\right|>t,\left|w_{2}-a_{2}\right|>t\right) \\
& \leq \min \left(\mathbb{P}\left(\left|w_{1}-a_{1}\right|>t\right), \mathbb{P}\left(\left|w_{2}-a_{2}\right|>t\right)\right) \\
& \leq \min \left(\mathbb{P}\left(\left|w_{1}\right|>\left(t-\left|a_{1}\right|\right)_{+}\right), \mathbb{P}\left(\left|w_{2}\right|>\left(t-\left|a_{2}\right|\right)_{+}\right)\right) \\
& =\min \left(e^{-\left(t-\left|a_{1}\right|\right)_{+}^{2}}, e^{-\left(t-\left|a_{2}\right|\right)_{+}^{2}}\right)
\end{aligned}
$$

When $|\xi| \leq \frac{1}{2}$, let $\boldsymbol{\Gamma}_{h}=\left[\begin{array}{cc}1 & h \xi \\ h \bar{\xi} & 1\end{array}\right], 0 \leq h \leq 1$. Define a random vector $\left[\begin{array}{l}Z_{1} \\ Z_{2}\end{array}\right] \sim \mathcal{C N}\left(0, \boldsymbol{\Gamma}_{h}, \mathbf{0}\right)$ and a function of h

$$
F(h)=\mathbb{P}\left(\left|Z_{1}-a_{1}\right|>t,\left|Z_{2}-a_{2}\right|>t\right)
$$

Here $t>0$ is a fixed parameter. By Newton-Lebnitz theorem, we have

$$
\operatorname{Cov}\left(1_{\left\{\left|w_{1}-a_{1}\right|>t\right\}}, 1_{\left\{\left|w_{2}-a_{2}\right|>t\right\}}\right)=F(1)-F(0)=\int_{0}^{1} F^{\prime}(h) d h
$$

It suffices to give an upper bound to $F^{\prime}(h)$ for all $0<h<1$. By the density function of $\left[\begin{array}{l}Z_{1} \\ Z_{2}\end{array}\right]$, we have the explicit formula

$$
F(h)=\int_{\left|z_{1}-a_{1}\right|>t\left|z_{2}-a_{2}\right|>t} \frac{1}{\pi^{2} \operatorname{det}\left(\boldsymbol{\Gamma}_{h}\right)} \exp \left(-\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]^{*} \boldsymbol{\Gamma}_{h}^{-1}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]\right) d A_{2} d A_{1}
$$

Here $d A_{1}$ and $d A_{2}$ are the Lebesgue measures on the z_{1}-plane and z_{2}-plane, respectively. In other words, if we write $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then $d A_{1}=d x_{1} d y_{1}$ and $d A_{2}=d x_{2} d y_{2}$. Simple calculation in linear algebra gives $\operatorname{det}\left(\boldsymbol{\Gamma}_{h}\right)=1-h^{2}|\xi|^{2}$ and $\boldsymbol{\Gamma}_{h}^{-1}=\frac{1}{1-h^{2}|\xi|^{2}}\left[\begin{array}{cc}1 & -h \xi \\ -h \bar{\xi} & 1\end{array}\right]$, which implies

$$
F(h)=\iint_{\substack{\left|z_{1}-a_{1}\right|>t \\\left|z_{2}-a_{2}\right|>t}} \frac{1}{\pi^{2}\left(1-h^{2}|\xi|^{2}\right)} \exp \left(-\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 h \Re\left(\xi \bar{z}_{1} z_{2}\right)}{1-h^{2}|\xi|^{2}}\right) d A_{2} d A_{1}
$$

By changing the order of derivative and integrals, we have

$$
\begin{aligned}
& F^{\prime}(h) \\
& =\iint_{\substack{\left|z_{1}-a_{1}\right|>t \\
\left|z_{2}-a_{2}\right|>t}} \exp \left(-\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 h \Re\left(\xi \bar{z}_{1} z_{2}\right)}{1-h^{2}|\xi|^{2}}\right) \\
& {\left[\frac{2 h|\xi|^{2}}{\pi^{2}\left(1-h^{2}|\xi|^{2}\right)^{2}}+\frac{2 \Re\left(\xi \bar{z}_{1} z_{2}\right)+\left(2 h^{2} \Re\left(\xi \bar{z}_{1} z_{2}\right)-2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right) h\right)|\xi|^{2}}{\pi^{2}\left(1-h^{2}|\xi|^{2}\right)^{3}}\right] d A_{2} d A_{1}} \\
& \leq C|\xi| \underset{\substack{\left|z_{1}-a_{1}\right|>t \\
\left|z_{2}-a_{2}\right|>t}}{\iint_{2}}\left(1+\left|z_{1}\right|\left|z_{2}\right|\right) \exp \left(-\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 h \Re\left(\xi \bar{z}_{1} z_{2}\right)}{1-h^{2}|\xi|^{2}}\right) d A_{2} d A_{1},
\end{aligned}
$$

where C is a numerical constant. The last inequality is due to $0 \leq h \leq 1$ and $|\xi| \leq \frac{1}{2}$. Notice that

$$
\begin{aligned}
\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 h \Re\left(\xi \bar{z}_{1} z_{2}\right)}{1-h^{2}|\xi|^{2}} & \geq \frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 h|\xi|\left|z_{1}\right|\left|z_{2}\right|}{(1-h|\xi|)(1+h|\xi|)} \\
& \geq \frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}{1+h|\xi|}
\end{aligned}
$$

This is due to the fact that $\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-2 \rho\left|z_{1}\right|\left|z_{2}\right|}{(1-\rho)}$ obtains the minimum at $\rho=0$. Therefore

$$
\begin{aligned}
F^{\prime}(h) & \leq C|\xi| \iint_{\substack{\left|z_{1}-a_{1}\right|>t \\
\left|z_{2}-a_{2}\right|>t}}\left(1+\left|z_{1}\right|\left|z_{2}\right|\right) \exp \left(-\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}{1+h|\xi|}\right) d A_{2} d A_{1} \\
& \leq C|\xi| \iint_{\substack{\left|z_{1}\right|>\left(t-\left|a_{1}\right|\right)_{+} \\
\left|z_{2}\right|>\left(t-\left|a_{2}\right|\right)_{+}}}\left(1+\left|z_{1}\right|\left|z_{2}\right|\right) \exp \left(-\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}{1+|\xi|}\right) d A_{2} d A_{1}
\end{aligned}
$$

By using the polar coordinates: $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, we have $d A_{1}=$ $r_{1} d r_{1} d \theta_{1}$ and $d A_{2}=r_{2} d r_{2} d \theta_{2}$. Then

$$
F^{\prime}(h) \leq C|\xi| 4 \pi^{2} \int_{\left(t-\left|a_{1}\right|\right)_{+}}^{\infty} \int_{\left(t-\left|a_{2}\right|\right)_{+}}^{\infty}\left(1+r_{1} r_{2}\right) \exp \left(-\frac{r_{1}^{2}+r_{2}^{2}}{1+|\xi|}\right) r_{1} r_{2} d r_{1} d r_{2}
$$

For any fixed $u>0$, simple integration by parts yields

$$
\int_{u}^{\infty} \exp \left(-\frac{r^{2}}{1+|\xi|}\right) r d r=\frac{1+|\xi|}{2} \exp \left(-\frac{u^{2}}{1+|\xi|}\right)
$$

and

$$
\begin{aligned}
& \int_{u}^{\infty} \exp \left(-\frac{r^{2}}{1+|\xi|}\right) r^{2} d r \\
& =\frac{(1+|\xi|) u}{2} \exp \left(-\frac{u^{2}}{1+|\xi|}\right)+\frac{1+|\xi|}{2} \int_{u}^{\infty} \exp \left(-\frac{r^{2}}{1+|\xi|}\right) d r \\
& \leq C(1+u) \exp \left(-\frac{u^{2}}{1+|\xi|}\right)
\end{aligned}
$$

where the last inequality is due to the real Gaussian bound. These equalities/inequalities give
$F^{\prime}(h) \leq C_{0}|\xi| \exp \left(-\frac{\left(t-\left|a_{1}\right|\right)_{+}^{2}+\left(t-\left|a_{2}\right|\right)_{+}^{2}}{(1+|\xi|)}\right)\left(1+\left(t-\left|a_{1}\right|\right)_{+}\right)\left(1+\left(t-\left|a_{2}\right|\right)_{+}\right)$.
By integrating it over $[0,1]$, our proposition is proven.

0.3. Pproof of Theorem 2.2.

Proof. Without loss of generality, assume $\frac{p}{N}=p^{\gamma}$ is an integer. We now consider a class of special alternatives. Let

$$
\tilde{\beta}_{1}=\ldots=\tilde{\beta}_{s}=\sqrt{\frac{r p \log p}{N}}
$$

be real and positive. As to $\boldsymbol{\tau}$, we first define a set of index vectors:

$$
\begin{aligned}
T_{N}= & \left\{\tilde{\boldsymbol{\tau}}=\left(\tilde{\tau}_{1}, \ldots, \tilde{\tau}_{s}\right): 1 \leq \tilde{\tau}_{1}<\ldots<\tilde{\tau}_{s} \leq N\right. \\
& \left.\tilde{\tau}_{l+1}-\tilde{\tau}_{l} \geq \log ^{2} N \text { for } l=1, \ldots, s-1, \tilde{\tau}_{1}+N-\tilde{\tau}_{s} \geq \log ^{2} N\right\}
\end{aligned}
$$

For $\tilde{\boldsymbol{\tau}} \in T_{N}$, define $\boldsymbol{\tau}=\left(p^{\gamma}\left(\tilde{\tau}_{1}-1\right)+1, \ldots, p^{\gamma}\left(\tilde{\tau}_{s}-1\right)+1\right)$, which implies $(\boldsymbol{\tau}, \tilde{\boldsymbol{\beta}}) \in \Gamma(p, N, s, r)$. Then the measurements become

$$
\begin{aligned}
y_{j} & =\frac{1}{\sqrt{p}} \sum_{l=1}^{s} e^{-\frac{2 \pi i\left(\tau_{l}-1\right)(j-1)}{p}} \tilde{\beta}_{l}+z_{j} \\
& =\frac{1}{\sqrt{p}} \sum_{l=1}^{s} e^{-\frac{2 \pi i p^{\gamma}\left(\tilde{l}_{l}-1\right)(j-1)}{p}} \sqrt{\frac{r p \log p}{N}}+z_{j} \\
& =\frac{1}{\sqrt{N}} \sum_{l=1}^{s} e^{-\frac{2 \pi i\left(\tilde{\tau}_{l}-1\right)(j-1)}{N}} \sqrt{r \log p}+z_{j}
\end{aligned}
$$

for $j=1, \ldots, N$.
Denote by \boldsymbol{F}_{N} the $N \times N$ normalized DFT matrix:

$$
\boldsymbol{F}_{N}(j, k)=\frac{1}{\sqrt{N}} e^{-\frac{2 \pi i(k-1)(j-1)}{N}} .
$$

Define $\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}}) \in \mathbb{R}^{N}$, such that the $\tilde{\tau}_{l}$ th component of $\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})$ is $\sqrt{2 r \log p}=$ $\sqrt{2 r(1-\gamma) \log N}$ for $l=1, \ldots, s$, while other components are zeros. Then $\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})$ is a sparse vector, whose sparsity is $s=p^{1-\alpha}=N^{1-\frac{\alpha-\gamma}{1-\gamma}}$. Moreover, all its entries are all $\sqrt{2 r \log p}=\sqrt{2 r(1-\gamma) \log N}$. Now the measurements can be written as

$$
\boldsymbol{y}=\frac{1}{\sqrt{2}} \boldsymbol{F}_{N} \boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})+\boldsymbol{z},
$$

which is equivalent to

$$
\sqrt{2} \boldsymbol{F}_{N}^{*} \boldsymbol{y}=\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})+\sqrt{2} \boldsymbol{F}_{N}^{*} \boldsymbol{z}
$$

Notice that $\boldsymbol{F}_{N}^{*} \boldsymbol{z} \sim \mathcal{C N}(\mathbf{0}, \boldsymbol{I}, \mathbf{0})$. Since $\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})$ is deterministic, real and positive and the imaginary and real parts of $\sqrt{2} \boldsymbol{F}_{N}^{*} \boldsymbol{y}$ are independent, we have the following equivalent measurement:

$$
\boldsymbol{v}:=\Re\left(\sqrt{2} \boldsymbol{F}_{N}^{*} \boldsymbol{y}\right)=\boldsymbol{\theta}(\tilde{\boldsymbol{\tau}})+\boldsymbol{w},
$$

where $\boldsymbol{w} \in \mathcal{N}\left(\mathbf{0}, \boldsymbol{I}_{N}\right)$. Now the detection problem becomes nearly the standard sparse mean detection studied in [S33]; aslo see [S22, S30]. The only difference is that here $\tilde{\boldsymbol{\tau}} \in T_{N}$ satisfies the separation condition, which is

$$
\tilde{\tau}_{l+1}-\tilde{\tau}_{l} \geq \log ^{2} N \text { for } l=1, \ldots, s-1, \tilde{\tau}_{1}+N-\tilde{\tau}_{s} \geq \log ^{2} N .
$$

We now prove that this difference is actually negligible. Suppose $\tilde{\boldsymbol{\tau}}$ is uniformly distributed in T_{N}. It induces a mixed simple alternative

$$
p_{1}(\boldsymbol{v})=\frac{1}{\left|T_{N}\right|} \sum_{\tilde{\boldsymbol{\tau}} \in T_{N}} p_{\tilde{\boldsymbol{\tau}}}(\boldsymbol{v})
$$

To prove that

$$
\mathbb{P}_{0}\left(H_{0} \text { is rejected }\right)+\max _{(\boldsymbol{\beta}, \boldsymbol{\tau}) \in \Gamma(p, N, s, r)} \mathbb{P}_{(\boldsymbol{\beta}, \boldsymbol{\tau})}\left(H_{0} \text { is accepted }\right) \rightarrow 1,
$$

by the standard Hellinger distance argument, it suffices to prove the

$$
\mathbb{E}_{0} \sqrt{\frac{p_{1}}{p_{2}}(\boldsymbol{v})} \geq 1-o(1) .
$$

Suppose S_{N} is the collection of all subsets of $\{1, \ldots, N\}$ with cardinality s. By Lemma A. 8 in [S30], we know $\frac{\left|T_{N}\right|}{\left|S_{N}\right|}=1-o(1)$. Define

$$
\tilde{p}_{1}(\boldsymbol{v})=\frac{1}{\left|S_{N}\right|} \sum_{\tilde{\boldsymbol{\tau}} \in S_{N}} p_{\tilde{\boldsymbol{\tau}}}(\boldsymbol{v})
$$

and define

$$
\delta(\boldsymbol{v})=\frac{\left|S_{N}\right|}{\left|T_{N}\right|} \tilde{p}_{1}-p_{1}=\frac{1}{\left|T_{N}\right|} \sum_{\tilde{\boldsymbol{\tau}} \in\left(S_{N}-T_{N}\right)} p_{\tilde{\boldsymbol{\tau}}}(\boldsymbol{v})
$$

If $\tilde{\boldsymbol{\tau}}$ is uniformly distributed in S_{N}, \tilde{p}_{1} becomes the simple mixed alternative, and the detection problem becomes the standard sparse mean detection problem. Notice that

$$
\begin{aligned}
\mathbb{E}_{0} \sqrt{\frac{p_{1}}{p_{0}}} & =\mathbb{E}_{0} \sqrt{\frac{\left|S_{N}\right|}{\frac{\left|T_{N}\right|}{} \tilde{p}_{1}-\delta}} p_{0} \\
& \geq \mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}}-\mathbb{E}_{0} \sqrt{\frac{\delta}{p_{0}}} \\
& \geq \mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}}-\sqrt{\mathbb{E}_{0} \frac{\delta}{p_{0}}} \\
& =\mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}}-\sqrt{\frac{1}{\left|T_{N}\right|}} \sum_{\tilde{\tau} \in S_{N}-T_{N}} 1 \\
& =\mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}}-\sqrt{\frac{\left|S_{N}-T_{N}\right|}{\left|T_{N}\right|}} \\
& \geq \mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}}-o(1) .
\end{aligned}
$$

Therefore, it suffices to prove $\mathbb{E}_{0} \sqrt{\frac{\tilde{p}_{1}}{p_{0}}} \geq 1-o(1)$. The problem now becomes the standard sparse mean vector detection studied in [S33, S22, S30]. Since $s=N^{1-\frac{\alpha-\gamma}{1-\gamma}}$ and the common nonzero components of the mean vector: $\sqrt{2 r(1-\gamma) \log N}$, it suffices to require

$$
\left\{\begin{array}{l}
r(1-\gamma)<\frac{\alpha-\gamma}{1-\gamma} \quad \text { if } \frac{1}{2}<\frac{\alpha-\gamma}{1-\gamma} \leq \frac{3}{4}, \\
r(1-\gamma)<\left(1-\sqrt{1-\frac{\alpha-\gamma}{1-\gamma}}\right)^{2} \text { if } \frac{3}{4}<\frac{\alpha-\gamma}{1-\gamma}<1 .
\end{array}\right.
$$

This is exactly $r<\rho_{\gamma}^{*}(\alpha)$, and the proof is completed.

