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THEORETICAL ANALYSIS OF NONPARAMETRIC
FILAMENT ESTIMATION1

BY WANLI QIAO AND WOLFGANG POLONIK

University of California, Davis

This paper provides a rigorous study of the nonparametric estimation of
filaments or ridge lines of a probability density f . Points on the filament are
considered as local extrema of the density when traversing the support of f

along the integral curve driven by the vector field of second eigenvectors of
the Hessian of f . We “parametrize” points on the filaments by such inte-
gral curves, and thus both the estimation of integral curves and of filaments
will be considered via a plug-in method using kernel density estimation. We
establish rates of convergence and asymptotic distribution results for the es-
timation of both the integral curves and the filaments. The main theoretical
result establishes the asymptotic distribution of the uniform deviation of the
estimated filament from its theoretical counterpart. This result utilizes the ex-
treme value behavior of nonstationary Gaussian processes indexed by mani-
folds Mh,h ∈ (0,1] as h → 0.

1. Introduction. Intuitively, a filament or a ridge line is a curve or a lower-
dimensional manifold at which the height of a density is higher than in surrounding
areas when looking in the “right direction”—a precise definition is given below.
For instance, blood vessels, road system and fault lines can be modeled as fila-
ments. One of the most prominent instances of data sets modeled by means of
filaments is the so-called cosmic web, consisting of location of galaxies [Novikov,
Colombi and Doré (2006)]. Cosmologists are very interested in finding a rigor-
ous topological description of this geometric structure because of its relation to
the existence of dark matter [Dietrich et al. (2012)]. In fact, a large body of work
on the estimation of filaments and the extraction of their topological structures
exists in the corresponding cosmology literature, such as Barrow, Sonoda and
Bhavsar (1985), Bharadwaj, Bhavsar and Sheth (2004) and Pimbblet, Drinkwa-
ter and Hawkrigg (2004). Much of this work is missing theoretical underpinning,
however.

The goal of this paper is to theoretically study the nonparametric estimation of
filaments and to develop rigorous theory, in particular distributional results, sup-
porting the proposed estimation approach based on kernel density estimation. In-
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tegral curves [cf. (1.2) below] are used to find and to “parametrize” filaments, and
thus the estimation of integral curves comes into play here naturally.

Earlier work on ridge estimation in a statistical context includes Hall, Qian and
Titterington (1992), where several geometric measures of “ridgeness” are defined
and investigated. More recent work includes Genovese et al. (2009, 2012a, 2016)
and Chen, Genovese and Wasserman (2013). Filament estimation is related to sev-
eral other geometrically motivated concepts, such as manifold learning [Genovese
et al. (2012b)], investigating modality, edge detection, principle curves [Hastie
and Stuetzle (1989)], locally defined principal curves and surfaces [Ozertem and
Erdogmus (2011)], etc. More recently, the concept of persistent homology explic-
itly combines statistical mode and antimode estimation with topological concepts
[e.g., Chapter 5 of Genovese et al. (2016)]. From a more general perspective, all
these methods are attempting to find structure in multivariate data with geomet-
ric and topological ideas entering the definition of the methodology explicitly [cf.
Genovese et al. (2012a)].

The lack of supporting theory, which we address in this paper, is only one chal-
lenge of filament estimation. Other challenges include the design of algorithms
for tracking filaments. While the design of algorithms was part of this research, it
is not included in this paper, but will be published elsewhere. However, geomet-
ric algorithms for finding modes or ridge points tend to be based on estimating
integral curves (e.g., the well-known mean-shift algorithm estimates the integral
curves driven by the gradient [Fukunaga and Hostetler (1975), Cheng (1995) and
Comaniciu and Meer (2002)]). This motivated our study of the estimation of fila-
ments through the lens of estimating integral curves.

While the notion of a filament has an intuitive geometric interpretation, a rig-
orous definition is needed here. The definition of filaments used here is intimately
related to integral curves driven by the second eigenvectors of the Hessian matrices
of the density function. Only the two-dimensional space will be considered here
so that filaments and integral curves are curves in the plane. Extension to higher-
dimensional space is possible but some technical problems may come into play.
Also, as can be seen from the examples given above, the two-dimensional case
covers many important applications of filament estimation. The following defini-
tion of filament points can, for instance, be found in Eberly (1996).

DEFINITION 1.1 (Filament points in R2). Let f : R2 #→ R be a twice differ-
entiable function with gradient ∇f (x) and Hessian matrix ∇2f (x). Let λ2(x) ≤
λ1(x) denote the eigenvalues of the Hessian with corresponding eigenvectors V (x)
and V ⊥(x), respectively. A point x is said to be a filament point if

〈∇f (x),V (x)
〉 = 0 and λ2(x) < 0.(1.1)

Geometrically, ⟨∇f (x),V (x)⟩ and V (x)T ∇2f (x)V (x) = λ2(x)∥V (x)∥2 are
first- and second-order directional derivative of f (x) along V (x). Condition (1.1)
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thus means that a filament point x is a local mode of f (x) along the direction
V (x). The idea of using the above characterization of a point on a filament for sta-
tistical purposes has been used independently by Genovese et al. (2014) and Chen,
Genovese and Wasserman (2013, 2014, 2015).

By our definition, a point on a filament is an extremal point of f when traversing
along an integral curve driven by V (x). The integral curve Xx0 : [−Tmin, Tmax] →
R2 (with Tmin, Tmax ≥ 0 and Tmin + Tmax > 0) starting in x0 ∈ R2 driven by V (x)
is given by the solution to the differential equation

dXx0(t)

dt
= V

(
Xx0(t)

)
, Xx0(0) = x0.(1.2)

Note that −V (x) is also an eigenvector of H(x) and for X̃x0 satisfying

dX̃x0(t)

dt
= −V

(
X̃x0(t)

)
, X̃x0(0) = x0,(1.3)

we have Xx0(t) = X̃x0(−t) for t ∈ [−Tmin, Tmax].
Genovese et al. (2009) use integral curves driven by the gradient field to de-

fine a “path density,” whose level sets then contain large portions of the filament.
Rather than integral curves of gradients, we here use integral curves of the second
eigenvector of the Hessian.

The sampling model considered here consists of independent observations from
the underlying p.d.f. Other sampling models for filament estimation or detection
have been used in the statistical literature as well. For instance, Arias-Castro,
Donoho and Huo (2006) define a filament as a specific curve (of finite length).
Data are then sampled according to a uniform distribution on the curve and back-
ground noise is added. Genovese et al. (2012a) also start out with a sample from
the curve (filament) but then allow some (small) deviation of the data from the
filament.

Suppose a filament L exists in the support of a density function f : R2 → R+.
The goal is to find an estimate of L from a random sample X1,X2, . . . ,Xn drawn
from f , and to assess the reliability of the estimation. Let the first “time point” t
at which Xx0(t) hits the filament L be denoted by θx0 , that is,

Xx0(θx0) ∈ L.

Starting points x0 corresponding to different trajectories lead to different corre-
sponding filament points. The estimation of the filament can be divided into two
steps: Estimation of the trajectory Xx0(t) and estimation of the parameter θx0 cor-
responding to the filament point defined through the trajectory Xx0(t). Both these
quantities will be estimated by plug-in estimates using a kernel density estimator.
The corresponding estimates are denoted by X̂x0 and θ̂x0 , respectively. The assess-
ment of the uncertainty in the estimation of the filament point Xx0(θx0) through
X̂x0(θ̂x0) is also based on these two sources of uncertainty, as illustrated in Fig-
ure 1.

In this paper, we present three different types of results:
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FIG. 1. Illustration of the integral curve Xx0 (t), its estimate X̂x0 (t), and of the estimation of a
filament point Xx0 (θx0 ) and its estimate X̂x0 (θ̂x0 ).

(i) the estimation of the integral curve itself, that is, we consider the
asymptotic behavior of the properly normalized process X̂x0(t) − Xx0(t), t ∈
[−Tmin, Tmax] with Tmin, Tmax ≥ 0 and Tmin + Tmax > 0;

(ii) the large sample behavior of the estimator θ̂x0 ; and
(iii) by combining results of type (i) and (ii), we will derive large sample be-

havior of the filament estimate X̂x0(θ̂x0). Our main result on filament estimation
(Theorem 3.1) gives the asymptotic distribution of the uniform deviation of the fil-
ament estimator. More precisely, we will provide conditions ensuring that we have
the following.

There exists a function g(x) depending on f and on the kernel K used to define
our estimators, such that for any fixed z, we have

lim
n→∞P

(
sup
x0∈G

∥∥g
(
Xx0(θx0)

)√
nh6

(
X̂x0(θ̂x0) − Xx0(θx0)

)∥∥ < bh(z)
)

= e−2e−z
,

where bh(z) =
√

2 logh−1 + 1√
2 logh−1

[z+c] with c > 0 depending on f,K and L,

and G is some properly chosen subregion of R2 such that L = {Xx0(θx0) : x0 ∈ G},
and h denotes the bandwidth (see below).

Discussion: (a) The results of type (i) and (ii) used to derive this main result are
of independent interest. Note that Bickel and Rosenblatt (1973) discussed uniform
absolute deviation of the univariate kernel density estimator from the density func-
tion and developed a confidence band for the density function. Rosenblatt (1976)
extended the result to the multidimensional case. Our main result bears some sim-
ilarity with these results, and we will borrow some ideas from this classical work
for the proof of our result.
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(b) Notice that the filament points Xx0(θx0) and Xx1(θx1) are the same if the
starting points x0 and x1 both lie on the same integral curve. However, the esti-
mates for these two quantities that correspond to the same starting points are not
the same. In other words, when x0 is ranging over a (large) set we will have an
entire class of estimates for each filament point. Of course, we do not know which
of the starting points lie on the same integral curve. However, asymptotically the
maximum deviation over all these estimates behaves as if there were only a single
starting point from each integral curve. In fact, as it turns out, the extreme value
distribution in our main result (see above) only depends on the filament L. This
dependence is given through the constant c > 0 that is completely determined by L
(cf. end of the proof of the main result Theorem 3.1).

The paper is organized as follows. Section 2 presents the definition of our es-
timators. The main results on filament estimation and the estimation of integral
curves driven by the second eigenvector of the Hessian are given in Section 3.
Specifically, Theorem 3.1 precisely states the main result indicated above. The
proof uses an application of a limit result on the extreme value distribution of a
sequence of nonstationary Gaussian fields on a growing manifold, which is proven
in a companion paper by Qiao and Polonik (2015) (see Theorem 5.1). Section 3
also contains several other key results needed for the proof of the main result. The
logical sequence of the results follows the order of Theorems 3.2, 3.3, 3.4, 3.5 and
then Theorem 3.1 with auxiliary Lemma 3.1 in-between. Another consequence of
these results is the pointwise asymptotic normality of our filament estimator with
rates depending on whether the gradient at the filament point is zero or not (Corol-
laries 3.1 and 3.2). Section 4 presents a summary and some discussion, and all the
proofs are delegated to Section 5 and the technical supplement [Qiao and Polonik
(2016)], respectively.

2. Notation and definition of the estimators. Let f : R2 → R+ be a four
times differentiable probability density function with corresponding c.d.f. F , and
let f (i,j)(x) = ∂ i+j f (x)

∂xi
1∂x

j
2

for i, j ∈ {0,1,2, . . .} and i + j ≤ 4. Then we write the

gradient of f as ∇f (x) = (f (1,0)(x), f (0,1)(x))T , and the Hessian matrix of f as

∇2f (x) ≡
(

f (2,0)(x) f (1,1)(x)

f (1,1)(x) f (0,2)(x)

)
.

Further write

d2f (x) = (
f (2,0)(x), f (1,1)(x), f (0,2)(x)

)T
.

Let V (x) denote a second eigenvector of ∇2f (x), which is assumed to have two
distinct eigenvalues on an appropriate subset of the support of f . In this paper, we
will use the specific form of V (x) given by

V (x) = G
(
d2(

f (x)
))

,
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where G = (G1,G2)
T : R3 #→ R2 is

G(u,v,w) =
( 2u − 2w + 2v − 2

√
(w − u)2 + 4v2

w − u + 4v −
√

(w − u)2 + 4v2

)
.(2.1)

Details of constructing G can be found in the supplemental material [Qiao and
Polonik (2016)]. Since f is four times continuously differentiable, V (x) is twice
continuously differentiable as long as the eigenvalues of Hessian ∇2f (x) are dis-
tinct. There are different ways of choosing V via G, for example, V (x) could have
norm 1. All that matters here is that V (x) is smooth and that ∥V (x)∥ is bounded
away from zero (and infinity). It is not difficult to verify that V (x) so defined is in
fact an eigenvector of the Hessian ∇2f (x) corresponding to its second eigenvalue

λ2(x) = J
(
d2f (x)

)
,

where

J (u, v,w) = u + w −
√

(u − w)2 + 4v2

2
.(2.2)

The estimator of the integral curve Xx0(t). Our estimator X̂x0(t) of the integral
curve Xx0(t) is based on a plug-in estimator of the second eigenvector V (x) of the
Hessian, that is, X̂x0(t) is the solution to

dX̂x0(t)

dt
= V̂

(
X̂x0(t)

)
, X̂x0(0) = x0,

where V̂ (x) is defined via a kernel estimator of the density. To be explicit, let
X1,X2, . . . be independent and identically distributed with density function f .
The kernel density estimator of f based on X1, . . . ,Xn,n ≥ 1 is

f̂ (x) = 1
nh2

n∑

i=1

K

(
x − Xi

h

)
, x ∈ R2,(2.3)

where K : R2 → R+ is a four times differentiable kernel function and h is the
positive bandwidth (sometimes we also write hn rather than h to indicate its de-
pendence on n). The corresponding plug-in kernel estimators of V (x) and λ2(x)
then are

V̂ (x) = G
(
d2f̂ (x)

)
and λ̂2(x) = J

(
d2f̂ (x)

)
, x ∈ R2.(2.4)

The estimator of the parameter θx0 . Consider a compact set H such that
f (x) > 0 on Hε0 for some ε0 > 0, where Hε0 denotes the ε0-enlarged set of H,
that is, the union of all the open balls of radius ε0 with midpoints in H. Let further
L denote the target filament. For any a, b ∈ R, we denote a ∧ b = min(a, b) and
a ∨ b = max(a, b).

We denote x0 ! L if there exists a t0 ∈ R with Xx0(t0) ∈ L and {Xx0(t) : 0 ∧
t0 ≤ t ≤ 0 ∨ t0} ⊂ H. We define

%x0 = {
t : 〈∇f

(
Xx0(t)

)
,V

(
Xx0(t)

)〉 = 0,λ2
(
Xx0(t)

)
< 0

}
.
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For a∗ > 0 let

G
(
L, a∗) := {

Xx0(t) : x0 ∈ L,−a∗ ≤ t ≤ a∗}
,(2.5)

which is assumed to be a subset of H. For simplicity, we write G(L, a∗) as G. By
definition of x0 ! L, for x0 ∈ G we have %x0 ≠∅ and let

θx0 = argmin
t

{|t | : t ∈ %x0

}
.(2.6)

Suppose that we can choose a∗ such that θx0 is unique for any x0 ∈ G. Note that
G and L have such a relationship that L = {Xx0(θx0) : x0 ∈ G}. This means that for
x0 ∈ G when traversing the path Xx0 we hit the filament L for the “first” time at
“time” |θx0 |. The estimator of θx0 is denoted by θ̂x0 and is defined as follows. Let

%̂x0 = {
t : 〈∇f̂

(
X̂x0(t)

)
, V̂

(
X̂x0(t)

)〉 = 0, λ̂2
(
X̂x0(t)

)
< 0

}
,

and define

θ̂x0 =
⎧
⎨

⎩

argmin
t

{|t | : t ∈ %̂x0

}
, if %̂x0 ≠ ∅,

0, if %̂x0 = ∅.
(2.7)

If the minimizer here is not unique, then we just choose one of them as θ̂x0 . The
probability of this happening is tending to zero under our assumptions. These as-
sumptions also assure that the probability of %̂x0 ≠ ∅ is tending to zero as n → ∞
for x ∈ G (see Proposition 5.1).

The estimator of a filament point Xx0(θx0 ) with x0 ! L is now given by

X̂x0(θ̂x0).

Our filament points (both estimates and theoretical) are parameterized by the start-
ing value of the integral curves. In fact, we should rather think of the parameter-
ization being induced by the corresponding integral curves, because any starting
point on the same integral curve of course results in the same filament point. Since
for each of the filament points there is exactly one integral curve passing through
this point, this provides us a way to make pointwise comparisons. Our estimator
of L is given by

L̂ = {
X̂x0(θ̂x0) : x0 ∈ G

}
.

To formulate our main theorem, we need the following additional notation and
definitions. For a matrix M and compatible vectors v,w we denote ⟨v,w⟩M =
vT Mw. We further write ∥v∥2

M = vT Mv, which for M the identity matrix is sim-
plified to ∥v∥2. For a vector field W : R2 #→ R3 let R(W) denote the matrix given
by R(W) := ∫

R2 W(x)W(x)T dx ∈ R3×3, assuming the integral is well defined,
and let R := R(d2K). Further, let

G̃(x) := ∇G
(
d2f (x)

) ∈ R2×3 and A(x) = G̃(x)T ∇f (x) ∈ R3,(2.8)
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and define the real-valued function g(x) as

g(x) = ã′(x)√
f (x)∥V (x)∥∥A(x)∥R

,(2.9)

where

ã′(x) = 〈∇f (x),V (x)
〉
∇V (x) + λ2(x)

∥∥V (x)
∥∥2

.(2.10)

Observe that ã′(Xx0(θx0)) = d
dt ax0(θx0) with ax0(t) = ⟨∇f (Xx0(t)),V (Xx0(t))⟩.

These quantities describe the behavior of f (Xx0(t)) at t = θx0 , and thus they play
an important role here. Our assumptions given below assure that g(x) is well de-
fined on H.

3. Main results.

3.1. Assumptions and their discussion.

(F1) f is a four times continuously differentiable p.d.f. All of its first- to
fourth-order partial derivatives are bounded.

(F2) H is compact such that f (x) > 0 on Hε0 for some ε0 > 0 and ∇2f (x)
has two distinct eigenvalues for x ∈ H.

(F3) L is a compact filament within H with L = {Xx0(θx0) : x0 ∈ G}, where θx0
is defined in (2.6) and G defined in (2.5) is a subset of H. We choose a∗ in (2.5)
such that θx0 is unique for any x0 ∈ G.

(F4) There exists a γ > 0 such that

inf
x0∈L

inf
−a∗≤s<u≤a∗

∥∥∥∥
1

u − s

∫ u

s
V

(
Xx0(λ)

)
dλ

∥∥∥∥ ≥ γ .

(F5) ⟨∇⟨∇f (x),V (x)⟩,V (x)⟩ ≠ 0 for all x ∈ L.
(F6) {x ∈ H : λ2(x) = 0, ⟨∇f (x),V (x)⟩ = 0} =∅.
(F7) ∇f (x)T G̃(x) ≠ 0 for x ∈ L.
(K1) The kernel K is a symmetric probability density function with support

being the unit ball in R2. All of its first- to fourth-order partial derivatives are
bounded and

∫
R2 K(x)xxT dx = µ2(K)I2×2 with µ2(K) < ∞.

(K2) R(d2K) < ∞ where for g : R2 #→ R3, R(g) := ∫
R2 g(x)g(x)T dx.

(K3)
∫ [K(3,0)(z)]2 dz ≠ ∫ [K(1,2)(z)]2 dz.

(K4) For any open ball S with positive radius contained in B(0,1) the compo-
nent functions of 1S(s)d2K(s) are linearly independent.

(H1) As n → 0, hn ↓ 0, nh8
n/(logn)3 → ∞ and nh9

n → β for some β ≥ 0.

Discussion of the assumptions.

1. Assumption (F1) implies that V (x) is Lipschitz continuous on R2. Since
⟨∇f (x),V (x)⟩ = 0 on a filament, ∇⟨∇f (x),V (x)⟩ provides a direction normal to
the filament. Therefore, Assumption (F1) implies that L is twice differentiable and
has bounded curvature.
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2. Assumptions (F2) and (F6) are imposed to avoid the existence of “degener-
ate” filament points. Specifically, assumption (F6) ensures the exclusion of points
at which the first- and second-order directional derivatives of f (x) along V (x) are
both zero. By assumption (F2), there exists a δ > 0 such that {d2f (x) : x ∈ H} ⊂
Qδ , where

Qδ = {
(u, v,w) ∈ R3 : |u − w| > δ or |v| > δ

}
,(3.1)

since two eigenvalues of a 2 × 2 symmetric matrix are equal iff the matrix is a
scaled identity matrix.

3. (F7) in particular excludes flat parts on the filaments, that is, ∥∇f (x)∥ ≠ 0,
for x ∈ L.

4. The set G defined in (2.5) denotes the set of starting points of the integral
curves, each of which uniquely corresponds to a filament point on L. The unique-
ness follows from the well-known fact that integral curves are nonoverlapping ex-
cept possibly at their endpoints, and our assumptions exclude the latter case. The
set G is compact, because [−a∗, a∗] × L is compact by (F3) and that the map-
ping (t, x0) #→ Xx0(t) is continuous as shown in the technical supplement [Qiao
and Polonik (2016)]. Note that the choice of a∗ does not affect the asymptotic
distribution result in our main theorem (cf. Theorem 3.1).

5. Since {Xx0(s) : x0 ∈ G, θx0 − a∗ ≤ s ≤ θx0 + a∗} = G, the two sets {Xx0(s) :
x0 ∈ G, θx0 − a∗ ≤ s ≤ θx0 + a∗} and {Xx0(s) : x0 ∈ L,−a∗ ≤ s ≤ a∗} are equal.
Therefore, assumption (F4) is equivalent to

inf
x0∈G

inf
θx0−a∗≤s<u≤θx0+a∗

∥∥∥∥
1

u − s

∫ u

s
V

(
Xx0(λ)

)
dλ

∥∥∥∥ ≥ γ .

It will be satisfied, for instance, under the condition that the convex hull of G is
a subset of H. An assumption similar to (F4) can also be found in Koltchinskii,
Sakhanenko and Cai (2007).

6. The geometric meaning of assumption (F5) is that the second eigenvector
V (x) of the Hessian H(x) is not orthogonal to the normal direction at the fil-
ament, which is represented by ∇⟨∇f (x),V (x)⟩. Assumption (F5) implies that
⟨∇f (Xx0(t)),V (Xx0(t))⟩ as a function of t is strictly monotone at θx0 , that is, it
changes signs at θx0 .

7. Assumption (K4) means that there is no linear combination of the component
functions of d2K(s) whose roots constitute a set of positive Lebesgue measure.
A kernel function K satisfying assumptions (K1)–(K4) is given by

K(z) = 6
π

(
1 − ∥z∥2)51B(0,1)(z), z ∈ R2.

Let z = (z1, z2)
T . Then assumption (K4) can be verified by observing that

d2K(z) = 15
π

(
1 − z2

1 − z2
2
)3

⎛

⎜⎝
9z2

1 + z2
2 − 1

8z1z2 − 2
z2

1 + 9z2
2 − 1

⎞

⎟⎠ .
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8. Below we study the properties of the kernel K under the given assumptions.
First, note that by the symmetry of K(·) we have

∫ [
K(2,1)(z)

]2
dz =

∫ [
K(1,2)(z)

]2
dz,(3.2)

∫ [
K(3,0)(z)

]2
dz =

∫ [
K(0,3)(z)

]2
dz.(3.3)

Denote I ({c1, c2}, {c3, c4}) := ∫
K(c1,c2)(z)K(c3,c4)(z) dz. Using integration by

parts and assumption (K1), the value of I ({c1, c2}, {c3, c4}) is equal to the value
of the integrals in (3.2) for ({c1, c2}, {c3, c4}) ∈ {({4,0}, {0,2}), ({3,1}, {1,1}),
({2,2}, {0,2})} and I ({4,0}, {2,0}) equals the value of the integrals in (3.3).

9. By standard arguments, for the second derivatives of the density the bias of
the kernel estimator is of order O(h2), which under assumption (H1) is faster than
Op(

logn

nh6 ), that is, the convergence rate of the stochastic part. Therefore, the bias is
absorbed into the stochastic variation, and the rate of the former does not appear
in our theorems.

3.2. Filament estimation. We first present our main result on filament estima-
tion, which gives the asymptotic distribution of the uniform absolute deviation of
the estimator of the filament from the target filament that is assumed to exist under
our set-up. This main result is in the same spirit as the classical results by Bickel
and Rosenblatt (1973) and Rosenblatt (1976) for kernel density estimates.

THEOREM 3.1. Suppose that (F1)–(F7), (K1)–(K4) and (H1) hold. Then
there exists a constant c ∈ R depending on K,f and L such that for any z ∈ R we
have with

bh(z) =
√

2 logh−1 + 1
√

2 logh−1
[z + c],(3.4)

that as n → ∞
P

(
sup
x0∈G

∣∣g
(
Xx0(θx0)

)∣∣∥∥
√

nh6
(
X̂x0(θ̂x0) − Xx0(θx0)

)∥∥ < bh(z)
)

→ e−2e−z
.(3.5)

Notice that in particular the assumptions of this theorem assure that there is
no flat part on the filament. The dependence of c on K,f and L is made ex-
plicit in the proof of Theorem 3.1 given in Section 5. As already indicated, to
prove Theorem 3.1 we approximate the supremum distance between X̂x0(θ̂x0) and
Xx0(θx0) by a supremum of a Gaussian random field over the rescaled filaments
Lh = {x : xh ∈ L} as h → 0. The proof combines results for estimating the trajec-
tory of the integral curve and the estimation of the parameter value at the filament
points when traveling along the integral curve. These results, which are of inde-
pendent interest, will be discussed in the following subsections.



NONPARAMETRIC FILAMENT ESTIMATION 1279

It will turn out that the estimation of the integral curves can be accomplished at a
faster rate than the estimation of the location of the mode along the integral curve,
and so it is the latter that is determining the rate in Theorem 3.1. It perhaps is not a
surprise that the estimation of the trajectory itself turns out to be negligible, as the
property of being a maximizer/maximum is of local nature. In other words, in our
approach the estimation of the integral curves only serves as a means to an end. We
will further see in the next section that for each fixed x0 the deviation θ̂x0 − θx0 can
be approximated by a linear function of the deviations of the second derivatives
of the kernel estimator (see Theorem 3.1). Since under our assumptions we can
estimate second derivatives of f by the standard rate

√
nhd+4 =

√
nh6, this then

explains the normalizing factor in Theorem 3.1. In fact, Genovese et al. (2014)
derived the rate Op((

logn

nh6 )1/2) + O(h2) for the Hausdorff distance between a fila-
ment and its kernel estimate, where O(h2) accounts for the rate of the bias term,
which can be absorbed into Op(( logn

nh6 )1/2) under out assumption (H1). Notice that

supx0∈G ∥X̂x0(θ̂x0) − Xx0(θx0)∥ gives an upper bound on the Hausdorff distance
between the sets L and L̂.

The proof of Theorem 3.1 requires the derivation of several results that are inter-
esting in their own right. These results provide further insight about the behavior
of our filament estimation approach and they also provide more details about the
deviation X̂x0(θ̂x0)−Xx0(θx0). In fact, if we decompose this deviation into the pro-
jection orthogonal to the filament, that is, the projection onto V (Xx0(θx0)), and the
projection onto V ⊥(Xx0(θx0)), then we will see that under the assumptions of the
above theorem the estimation of the latter is asymptotically negligible. The key
assumption here is that the filament has no flat part. Without this assumption the
two projections (and thus the deviation of the filament itself) both are of the order
Op(1/

√
nh5) (cf. Corollary 3.2).

3.3. Estimation of integral curves. This section discusses the estimation of the
integral curve Xx0(t). We will adapt the method from Koltchinskii, Sakhanenko
and Cai (2007) to our case. Koltchinskii, Sakhanenko and Cai (2007) assume the
availability of i.i.d. observations (Wi,Xi) following the regression model Wi =
V (Xi)+ εi with Xi and εi independent. In contrast to that, our model assumes the
underlying vector field to be given by the eigenvector of the Hessian of a density f ,
and we have available i.i.d. Xi’s from f . Our first result considers the estimation
of a single trajectory (i.e., we fix the starting point).

THEOREM 3.2. Under assumptions (F1)–(F2), (K1)–(K2) and (H1), for any
x0 ∈ G, 0 < γ < ∞ and 0 ≤ Tmin, Tmax < ∞, Tmin + Tmax ≠ 0 with {Xx0(t), t ∈
[−Tmin, Tmax]} ⊂ H and

inf
−Tmin≤s<u≤Tmax

∥∥∥∥
1

u − s

∫ u

s
V

(
Xx0(λ)

)
dλ

∥∥∥∥ ≥ γ ,(3.6)
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the sequence of stochastic process
√

nh5(X̂x0(t) − Xx0(t)), −Tmin ≤ t ≤ Tmax,
converges weakly in the space C[−Tmin, Tmax] := C([−Tmin, Tmax],R2) of
R2-valued continuous functions on [−Tmin, Tmax] to the Gaussian process
ω(t),−Tmin ≤ t ≤ Tmax, satisfying the SDE

dω(t) =
√

β

2
G̃

(
Xx0(t)

)
v
(
Xx0(t)

)
dt + ∇V

(
Xx0(t)

)
ω(t) dt

+
{
G̃

(
Xx0(t)

)[∫ ∫
K

(
Xx0(t), τ, z

)
f

(
Xx0(t)

)
dzdτ

]
(3.7)

× G̃
(
Xx0(t)

)T
}1/2

dW(t)

with initial condition ω(0) = 0, where W(t), t ≥ 0 is a two-sided standard Brown-
ian motion in R2,

v(x) =

⎛

⎜⎜⎜⎜⎜⎝

∫
K(z)zT ∇2f (2,0)(x)z dz

∫
K(z)zT ∇2f (1,1)(x)z dz

∫
K(z)zT ∇2f (0,2)(x)z dz

⎞

⎟⎟⎟⎟⎟⎠
∈ R3,(3.8)

and

K(x, τ, z) := d2K(z)
[
d2K

(
τV (x) + z

)]T ∈ R3×3.(3.9)

The proof of Theorem 3.2 that can be found in the supplementary material [Qiao
and Polonik (2016)] is following ideas from Koltchinskii, Sakhanenko and Cai
(2007). We can see that

√
nh5 is the appropriate normalizing factor under the as-

sumption of the theorem. The heuristic behind that rate is given by the fact that the
integral curve satisfies the integral equation

Xx0(t) =
∫ t

0
V

(
Xx0(s)

)
ds + x0.

Our estimator X̂x0(t) satisfies the similar equation with V replaced by V̂ , and thus
we have

X̂x0(t) − Xx0(t) =
∫ t

0

[
V̂

(
X̂x0(s)

) − V
(
Xx0(s)

)]
ds

(3.10)
≈

∫ t

0

[
V̂

(
X̂x0(s)

) − V
(
X̂x0(s)

)]
ds.

Heuristically, the indicated approximation holds because the remainder term∫ t
0 [V (X̂x0(s)) − V (Xx0(s))]ds roughly behaves like the integrated difference

X̂x0(t) − Xx0(t), which is of smaller order than X̂x0(t) − Xx0(t) itself. There-
fore, we get from (3.10) that the rate of convergence of X̂x0(t) − Xx0(t) is es-
sentially determined by the integrated difference V̂ (x) − V (x). Since V̂ is a func-
tion of the second derivatives of the density estimator, we obtain a standard rate



NONPARAMETRIC FILAMENT ESTIMATION 1281

of 1/
√

nh6 for the difference V̂ (x) − V (x), and through integrating we gain one
power of h, justifying the normalizing factor

√
nh5. The above theorem implies

that as n → ∞,

sup
t∈[−Tmin,Tmax]

∥∥X̂x0(t) − Xx0(t)
∥∥ = Op

( 1√
nh5

)
.

In the next theorem, we consider the behavior of X̂x0(t) − Xx0(t) not only uni-
formly in t but also uniformly in the starting point x0.

THEOREM 3.3. Suppose for any x0 ∈ G there exist T min
x0

, T max
x0

≥ 0 with
T min

x0
+ T max

x0
> 0 such that T min

x0
and T max

x0
are continuous in x0 ∈ G, and

{Xx0(t), t ∈ [−T min
x0

, T max
x0

]} ⊂ H for all x0 ∈ G. Further assume that for some
γG > 0

inf
x0∈G

inf
−T min

x0
≤s<u≤T max

x0

∥∥∥∥
1

u − s

∫ u

s
V

(
Xx0(λ)

)
dλ

∥∥∥∥ ≥ γG .(3.11)

Then under assumptions (F1)–(F2), (K1)–(K2) and (H1),

sup
x0∈G

sup
t∈[−T min

x0
,T max

x0
]

∥∥X̂x0(t) − Xx0(t)
∥∥ = Op

(√
logn

nh5

)
.

3.4. Pointwise asymptotic distribution of filament estimates. Our goal here is
to find the pointwise asymptotic distribution of X̂x0(θ̂x0) − Xx0(θx0), the differ-
ence of the “true” and the estimated filament points corresponding to integral
curves starting at x0. To this end, we first approximate X̂x0(θ̂x0) − Xx0(θx0) by
a linear function of the difference θ̂x0 − θx0 . Thus, finding good approximations
for X̂x0(θ̂x0) − Xx0(θx0) can be accomplished by finding good approximations for
θ̂x0 − θx0 .

THEOREM 3.4. If (F1)–(F6), (K1)–(K2) and (H1) hold, then

sup
x0∈G

∥∥[
X̂x0(θ̂x0) − Xx0(θx0)

] − V
(
Xx0(θx0)

)[θ̂x0 − θx0]
∥∥ = Op

(√
logn

nh5

)
.

Now we will utilize this approximation by deriving good approximations for
θ̂x0 − θx0 , which then lead to good approximations for X̂x0(θ̂x0)−Xx0(θx0). Define

ϕ̂1n(x) = 1
ã′(x)

〈∇f (x), d2f̂ (x) − Ed2f̂ (x)
〉
G̃(x),(3.12)

ϕ̂2n(x) = 1
ã′(x)

[〈
V (x), X̂x0(θx0) − x

〉
∇2f (x)

(3.13)
+ 〈

(E∇f̂ − ∇f )
(
X̂x0(θx0)

)
,V (x)

〉]
,



1282 W. QIAO AND W. POLONIK

where ã′(x) and G̃(x) are as in (2.10) and (2.8), respectively. Notice that for each
fixed x, the term ϕ̂1n(x) is a linear function of the second derivatives of f̂ . The
following result shows that −ϕ̂1n(Xx0(θx0)) serves as a good approximation of
θ̂x0 − θx0 . If ∥∇f (Xx0(θx0))∥ = 0 then ϕ̂1n(Xx0(θx0)) = 0, and a better approx-
imation is provided by ϕ̂2n(Xx0(θx0)), and we also have control over the exact
asymptotic behavior of this approximation, mainly due to Theorem 3.2.

LEMMA 3.1. Under assumptions (F1)–(F6), (K1)–(K2) and (H1), we have

sup
x0∈G

∣∣(θ̂x0 − θx0) + ϕ̂1n
(
Xx0(θx0)

)∣∣ = Op

( logn

nh7

)
.(3.14)

If in addition, supx0∈G ∥∇f (Xx0(θx0))∥ = 0, then

sup
x0∈G

∣∣(θ̂x0 − θx0) + ϕ̂2n
(
Xx0(θx0)

)∣∣ = Op

( logn

nh13/2

)
.(3.15)

Note that under standard assumptions, both ϕ̂1n(Xx0(θx0)) and ϕ̂2n(Xx0(θx0))
become asymptotically normal. Due to Theorem 3.4, this property will then trans-
late to the asymptotic normality of X̂x0(θ̂x0) − Xx0(θx0) (see below).

First, we provide a uniform large sample approximation of the estimator of the
filament point X̂x0(θ̂x0) from its target Xx0(θx0). The result provides further insight
into the behavior of our filament estimator. It is an immediate consequence of
Theorem 3.4 and Lemma 3.1.

THEOREM 3.5. Under assumptions (F1)–(F6), (K1)–(K2) and (H1):

sup
x0∈G

∥∥X̂x0(θ̂x0) − Xx0(θx0) + ϕ̂1n
(
Xx0(θx0)

)
V

(
Xx0(θx0)

)∥∥

(3.16)
= Op

( logn

nh7

)
.

If in addition, supx0∈G ∥∇f (Xx0(θx0))∥ = 0, then

sup
x0∈G

∥∥X̂x0(θ̂x0) − Xx0(θx0) + -(θx0)
(
X̂x0(θx0) − Xx0(θx0)

) + PV (θx0)b̂
∥∥

(3.17)
= Op

( logn

nh13/2

)
,

where b̂ = (E∇f̂ − ∇f )(X̂x0(θx0)), PV (t) = V (Xx0(t))V (Xx0(t))
T and

-(t) := (
ã′(Xx0(t)

))−1
PV (t)∇2f

(
Xx0(t)

) − I2×2 ∈ R2×2.

Recall that ϕ̂1n(x) is a real-valued random variable. Thus, (3.16) says that the
asymptotic distribution of X̂x0(θ̂x0) − Xx0(θx0) is degenerate, concentrating on the
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one-dimensional linear subspace spanned by V (Xx0(θx0)). Also note that the ap-
proximating quantity in Theorem 3.5 only depends on the filament points. This
then implies that the extreme value distribution of X̂x0(θ̂x0) − Xx0(θx0) over all
x0 ∈ G in fact only depends on the filament L rather than G (cf. Theorem 3.1).
Moreover, the approximations given in the above theorem imply exact rates of
convergence for our filament estimates for fixed x0. The following corollary makes
this precise.

COROLLARY 3.1. Under assumptions (F1)–(F6), (K1)–(K2) and (H1), for
every fixed x0 ∈ G

√
nh6

[
X̂x0(θ̂x0) − Xx0(θx0)

] → Z
(
Xx0(θx0)

)
V

(
Xx0(θx0)

)
,

where Z(Xx0(θx0)) is a mean zero normal random variable with variance

f
(
Xx0(θx0)

)∥∥W
(
Xx0(θx0)

)∥∥2
R,

where W(x) = (ã′(x))−1G̃(x)∇f (x)T ∈ R3.

Note that when ∥∇f (Xx0(θx0))∥ = 0, the variance of Z(Xx0(θx0)) is zero, and
thus the limit in the above corollary is degenerate. In this case, we have the follow-
ing result:

COROLLARY 3.2. Suppose that the assumptions from Corollary 3.1 hold, and
∥∇f (Xx0(θx0))∥ = 0. Then there exists m(θx0) ∈ R2 and .(θx0) ∈ R2×2 such that
with β from assumption (H1),

√
nh5

[
X̂x0(θ̂x0) − Xx0(θx0)

] → N
(
µθx0

,σ 2
θx0

)
,

with σ 2
θx0

= -(θx0).(θx0)-(θx0)
T and µθx0

= −-(θx0)m(θx0) − βPV (θx0)b(θx0)

where b(t) = 1
2µ2(K)((f (3,0) + f (1,2))(Xx0(t)), (f

(0,3) + f (2,1))(Xx0(t)))
T with

µ2(K) from assumption (K1), and -(θx0) ∈ R2×2 as given in Theorem 3.5.

The final corollary implies that the projection on the tangent direction to the
filament, that is, onto V ⊥(Xx0(θx0)), is of smaller order than the projection on the
direction orthogonal to the filament (assuming that the filament is not flat at this
point).

COROLLARY 3.3. Suppose that the assumptions of Corollary 3.1 hold. Then

sup
x0∈G

∣∣〈X̂x0(θ̂x0) − Xx0(θx0),V
⊥(

Xx0(θx0)
)〉∣∣ = Op

( logn

nh7

)
.(3.18)
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4. Summary and outlook. In this paper, we consider the nonparametric es-
timation of filaments. We compare the estimated point on a filament X̂x0(θ̂x0) ob-
tained by following an estimated integral curve X̂x0(t) with starting point x0 to
the corresponding population quantity Xx0(θx0). Here, Xx0 is an integral curve
driven by the second eigenvector of the Hessian of the underlying p.d.f. f , and
X̂x0 its plug-in estimate obtained by using a kernel estimator. Our main result
derives the exact asymptotic distribution of the appropriately standardized devi-
ation of X̂x0(θ̂x0) − Xx0(θx0) uniformly over a set of starting points x0 ∈ G with
L = {Xx0(θx0) : x0 ∈ G} (Theorem 3.1). Along the way, we derive several useful
results about the estimation of integral curves (Theorems 3.2 and 3.3).

The proof of our main result Theorem 3.1 rests on a probabilistic result on
the extreme value behavior of certain nonstationary Gaussian fields indexed by
growing manifolds. The main reason for this approach to work is an approximation
of the deviation X̂x0(θ̂x0) − Xx0(θx0) by a linear function of the second derivatives
of the kernel density estimator (Theorem 3.5), which in turn can be approximated
by a Gaussian field.

The same approach is expected to work in other situations, as long as we con-
sider linear functionals of (derivates of) kernel estimators. One possible applica-
tion that will be considered elsewhere is the estimation of level set of p.d.f.’s or
regression functions.

Algorithms for finding filaments, or perhaps more importantly, for finding fila-
ment structures (i.e., the union of possibly intersecting filaments) have been devel-
oped in Qiao (2013). This research will be published elsewhere.

5. Proofs. The proof of Theorem 3.2 follows similar ideas as the proof of
Theorem 1 from Koltchinskii, Sakhanenko and Cai (2007). The necessary mod-
ifications are more or less straightforward. More details are available from the
authors. In what follows, we use the notation ∥A∥F to denote the Frobenius norm
of a matrix A.

5.1. Proof of Theorem 3.3. Since

sup
x0∈G

sup
t∈[−T min

x0
,T max

x0
]

∥∥X̂x0(t) − Xx0(t)
∥∥

= max
{

sup
x0∈G

sup
t∈[0,T max

x0
]

∥∥X̂x0(t) − Xx0(t)
∥∥, sup

x0∈G
sup

t∈[−T min
x0

,0]

∥∥X̂x0(t) − Xx0(t)
∥∥
}
,

it suffices to prove that

sup
x0∈G

sup
t∈[0,T max

x0
]

∥∥X̂x0(t) − Xx0(t)
∥∥ = Op

(√
logn

nh5

)
,(5.1)
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and that the same result holds with [0, T max
x0

] replaced by [−T max
x0

,0]. The latter
result can be proven similarly to (5.1) by considering the relationship between Xx0

and X̃x0 defined in (1.3). For simplicity, we write T max
x0

as Tx0 .
With Ẑx0 satisfying the differential equation

dẐx0(t)

dt
= V̂

(
Xx0(t)

) − V
(
Xx0(t)

) + ∇V
(
Xx0(t)

)
Ẑx0(t),

(5.2)
Ẑx0(0) = 0,

and Ŷx0(t) = X̂x0(t) − Xx0(t), we denote D̂x0(t) := Ŷx0(t) − Ẑx0(t). Following
similar arguments as in the proof on page 1586 of Koltchinskii, Sakhanenko and
Cai (2007), we can show that

sup
x0∈G,t∈[0,Tx0 ]

∥∥D̂x0(t)
∥∥ = op

(
sup

x0∈G,t∈[0,Tx0 ]

∥∥Ẑx0(t)
∥∥
)

as n → ∞.

To show the assertion of the theorem, we now show supx0∈G,t∈[0,Tx0 ] ∥Ẑx0(t)∥ =
Op(

√
logn

nh5 ). Since

∥∥Ẑx0(t)
∥∥ ≤

∥∥∥∥

∫ t

0
(V̂ − V )

(
Xx0(s)

)
ds

∥∥∥∥ +
∫ t

0

∥∥∇V
(
Xx0(s)

)∥∥
F

∥∥Ẑx0(s)
∥∥ds,

Gronwall’s inequality [see Gronwall (1919)] implies

∥∥Ẑx0(t)
∥∥ ≤ sup

x0∈G,t∈[0,Tx0 ]

∥∥∥∥

∫ t

0
(V̂ − V )

(
Xx0(s)

)
ds

∥∥∥∥e
∫ t

0 ∥∇V (Xx0 (s))∥F ds,

so that

sup
x0∈G,t∈[0,Tx0 ]

∥∥Ẑx0(t)
∥∥ ≤ C sup

x0∈G,t∈[0,Tx0 ]

∥∥∥∥

∫ t

0
(V̂ − V )

(
Xx0(s)

)
ds

∥∥∥∥(5.3)

for some constant C. We have
∫ t

0

[
(V̂ − V )

(
Xx0(s)

) − ∇G
(
d2f

(
Xx0(s)

))
d2(f̂ − f )

(
Xx0(s)

)]
ds

=

⎛

⎜⎜⎝

∫ t

0
d2(f̂ − f )

(
Xx0(s)

)T
M1(s)d

2(f̂ − f )
(
Xx0(s)

)
ds

∫ t

0
d2(f̂ − f )

(
Xx0(s)

)T
M2(s)d

2(f̂ − f )
(
Xx0(s)

)
ds

⎞

⎟⎟⎠ ,

where

Mi(s) :=
∫ 1

0
∇2Gi

(
d2f

(
X(s)

) + τd2(f̂ − f )
(
X(s)

))
dτ, i = 1,2.(5.4)
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Thus, by using the fact that under our assumptions supx∈R2 ∥∇2f̂ (x) −
∇2f (x)∥F = OP (

√
logn

nh6 ),

sup
x0∈G

t∈[0,Tx0 ]

∥∥∥∥

∫ t

0

[
(V̂ − V )

(
Xx0(s)

) − ∇G
(
d2f

(
Xx0(s)

))
d2(f̂ − f )

(
Xx0(s)

)]
ds

∥∥∥∥

≤ sup
x0∈G

Tx0 sup
i=1,2
w∈R2

∥∥∇2Gi(w)
∥∥
(

sup
x∈R2

∥∥d2(f̂ − f )(x)
∥∥
)2

(5.5)

= Op

( logn

nh6

)
.

It remains to show that supx0∈G | ∫ t
0 ∇G(d2f (Xx0(s)))d

2(f̂ − f )(Xx0(s)) ds| =
Op(

√
logn

nh5 ). We write this integral as the sum of two terms, a mean zero prob-

abilistic part
∫ t

0 ∇G(d2f (Xx0(s)))[d2f̂ (Xx0(s)) − Ed2f̂ (Xx0(s))]ds and a term
caused by the bias,

∫ t
0 ∇G(d2f (Xx0(s)))[Ed2f̂ (Xx0(s)) − d2f (Xx0(s))]ds. We

will discuss the uniform convergence rate for each of two terms.
As for the bias term, recall that we have assumed that all the partial derivatives of

f up to fourth order are bounded and continuous. Then we have with Qδ from (3.1)

sup
x0∈G

t∈[0,Tx0 ]

∥∥∥∥E
[∫ t

0
∇G

(
d2f

(
Xx0(s)

))
d2(f̂ − f )

(
Xx0(s)

)
ds

]∥∥∥∥

≤ sup
x∈Qδ

∥∥∇G(x)
∥∥TG sup

x∈R2

∥∥E
(
d2(f̂ − f )(x)

)∥∥ = O
(
h2)

,

where the order O(h2) of the bias of the kernel estimator of the second derivatives
of the density follows by standard arguments. Under the assumption that nh9 →
β ≥ 0, we have

sup
x0∈G

t∈[0,Tx0 ]

∥∥∥∥E
[∫ t

0
∇G

(
d2f

(
Xx0(s)

))
d2(f̂ − f )

(
Xx0(s)

)
ds

]∥∥∥∥

(5.6)
= O

( 1√
nh5

)
.

To complete the proof, we now consider the mean zero stochastic part and show
that for j = 1,2 with d̄2f̂ (Xx0(s)) = d2f̂ (Xx0(s)) − Ed2f̂ (Xx0(s))

sup
x0∈G

t∈[0,Tx0 ]

∥∥∥∥

∫ t

0
∇Gj

(
d2f

(
Xx0(s)

))
d̄2f̂

(
Xx0(s)

)
ds

∥∥∥∥ = Op

(√
logn

nh5

)
.(5.7)
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Let K1 = K(2,0), K2 = K(1,1), K3 = K(0,2) and write

ωj (x;x0, t) :=
∫ t

0
∇Gj

(
d2f

(
Xx0(s)

))
d2K

(
Xx0(s) − x

h

)
ds

(5.8)

=
3∑

ℓ=1

ωj,ℓ(x;x0, t),

where ωj,ℓ(x;x0, t) = ∫ t
0

∂Gj

∂xℓ
(d2f (Xx0(s)))Kℓ(

Xx0 (s)−x

h ) ds. The dependence of
the functions ωj,ℓ on h (and thus on n) is suppressed in the notation. It suffices to
show that for j = 1,2 and ℓ = 1,2,3,

sup
x0∈G,t∈[0,Tx0 ]

∣∣∣∣∣
1

nh4

n∑

i=1

[
ωj,ℓ(Xi;x0, t) − Eωj,ℓ(Xi;x0, t)

]
∣∣∣∣∣ = Op

(√
logn

nh5

)
.(5.9)

In order to see this, we will use some empirical process theory. Related results
can also be found in Giné and Guillou (2002) and Einmahl and Mason (2005).
Consider the classes of functions

Fj,ℓ = {
ωj,ℓ(·;x0, t) : x0 ∈ G, t ∈ [0, Tx0]

}
, j = 1,2,ℓ = 1,2,3.

Again note that the classes Fj,ℓ depend on n through h. Let Q denote a proba-
bility distribution on R2. For a class of (measurable) functions F and τ > 0, let
N2,Q(F, ε) be the smallest number of L2(Q)-balls of radius τ needed to cover F .
We call N2,Q(F, ε) the covering number of Fj,ℓ with respect to the L2(Q)-
distance. We now show that for some constants A,v > 0 (not depending on n),
we have

sup
Q

N2,Q(Fj,ℓ, τ ) ≤
(

A

τ

)v

, j = 1,2,ℓ = 1,2,3.(5.10)

Empirical process theory then will imply (5.9) once we have found an appropriate
uniform bound for the variance of the random variables ωj,ℓ(Xi;x0, t). Property
(5.10) follows from

N∞(Fj,ℓ, τ ) ≤
(

A

τ

)v

, j = 1,2,ℓ = 1,2,3,(5.11)

where N∞(Fj,ℓ, τ ) denotes the covering number of Fj,ℓ with respect to the supre-
mum distance d∞(f1, f2) = supx∈R2 |f1(x)−f2(x)|. Property (5.10) follows from
(5.11), because for any probability measure Q we trivially have d2,Q(f1, f2) =
(
∫ |f1 − f2|2 dQ)1/2 ≤ sup |f1 − f2|, which implies that supQ N2,Q(Fj,ℓ, τ ) ≤

N∞(Fj,ℓ, τ ). The proof of (5.11) can be found in the supplementary material [Qiao
and Polonik (2016)].

Now that we have control over the covering numbers of the classes Fj,ℓ, all we
need to apply standard results from empirical process theory is an upper bound
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for the maximum variance of the ωj,ℓ(Xi;x0, t). We have with Kℓ,x0,h(s, x) =
Kℓ(

Xx0 (s)−x

h ) that

Eω2
j,ℓ(Xi;x0, t)

≤
∫ [∫ t

0
G̃j

(
Xx0(s)

)
Kℓ,x0,h(s, x) ds

]2
dF(x)

=
∫ ∫ t

0

∫ t

0

[
G̃j

(
Xx0(s)

)
Kℓ,x0,h(s, x)

]

× [
G̃j

(
Xx0

(
s′))Kℓ,x0,h

(
s′, x

)]
ds ds′ dF(x)

≤
∫ t

0

∫ t

0

∣∣G̃j
(
Xx0(s)

)
G̃j

(
Xx0

(
s′))∣∣

×
∫

Kℓ,x0,h(s, x)Kℓ,x0,h
(
s′, x

)
dF(x) ds ds′.

Now recall that the kernel K is assumed to have support inside the unit ball, and
notice that 1(∥Xx0(s) − x∥ ≤ h) · 1(∥Xx0(s

′) − x∥ ≤ h) ≤ 1(∥Xx0(s) − Xx0(s
′)∥ ≤

2h) ≤ 1(|s − s ′| ≤ ch) for some c > 0 with c not depending on x0, s or s′. There-
fore, we can estimate the last integral above by

C

∫ t

0

∫ t

0
1
(∣∣s − s′∣∣ ≤ ch

) ∫
1
(∥∥Xx0(s) − x

∥∥ ≤ h
)
dF(x) ds ds′ ≤ C′h3,

where C′ = supu |G̃j (u)|2M2
ℓ and C > 0 sufficiently large. Notice here that 0 ≤

t ≤ Tx0 ≤ TG < ∞. Thus, we can uniformly bound the variances of the sum in
(5.9) by σ 2 = O(n · ( 1

nh4 )2h3) = O( 1
nh5 ).

We now have control over the covering numbers of the classes Fj,ℓ along with
the variances of the sums involved. It is known from empirical process theory
[e.g., see van der Vaart and Wellner (1996), Theorem 2.14.1] that empirical pro-
cesses indexed by (uniformly bounded) classes of functions satisfying (5.11) (even

if the function classes depend on n) behave like Op(
√

σ 2 log 1/σ 2). Plugging in
our bound for σ gives the assertion of (5.9).

The asserted uniform convergence rate of the difference X̂x0(t)−Xx0(t) in (5.1)
now follows from (5.3), (5.5), (5.6) and (5.7). "

Below we will repeatedly apply Theorem 3.3 with Tx0 = θx0 , and so we need to
know that x0 → θx0 is continuous. This in fact follows from the fact that we can
interpret θx0 as indexed by the integral curve itself, and that we use the fact that
by our assumptions, integral curves are dense and nonoverlapping (a formal proof
can be found in the supplemental material [Qiao and Polonik (2016)].

5.2. A rate of convergence for supx0∈G |θ̂x0 − θx0 |. A rate of convergence
for supx0∈G |θ̂x0 − θx0 | is given here that is needed in the proofs below. Re-
call that θ̂x0 = argmint {|t | : t ∈ %x0} if %̂x0 ≠ ∅ [see (2.7)], where %̂x0 = {t :
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⟨∇f̂ (X̂x0(t)), V̂ (X̂x0(t))⟩ = 0, λ̂2(X̂x0(t)) < 0}. The proof of the following result
also implies that %̂x0 is nonempty and that θ̂x0 is unique for all x0 ∈ G with high
probability for large n. We will thus only consider the case of %̂x0 ≠ ∅ and unique
θ̂x0 in what follows.

PROPOSITION 5.1. Under assumptions (F1)–(F6), (K1)–(K2) and (H1), we

have with αn =
√

logn

nh6

sup
x0∈G

|θ̂x0 − θx0 | = Op(αn).

If, in addition, supx0∈G ∥∇f (Xx0(θx0))∥ = 0, then we can choose αn =
√

logn

nh5 .

In addition to Theorem 3.3, Proposition 5.1 is an important ingredient to the
proofs of Theorem 3.4 and Lemma 3.1. The proofs of Proposition 5.1, Theorem 3.4
and Lemma 3.1 as well as Corollaries 3.1–3.3 can be found in the supplementary
material [Qiao and Polonik (2016)].

5.3. Proof of Theorem 3.1. Similar to Bickel and Rosenblatt (1973) and
Rosenblatt (1976), the proof of Theorem 3.1 consists in using a strong approxi-
mation by (nonstationary) Gaussian processes indexed by manifolds. This approx-
imation, and in particular the indexing manifold itself, depend on the bandwidth
h. In fact, the indexing manifold is growing when h → 0. In a companion paper,
Qiao and Polonik (2015) derive the extreme value behavior of Gaussian processes
in such scenarios, and we will apply their result here. Below we state a special case
of this result for convenience.

Before stating the result on the extreme value behavior of Gaussian fields in-
dexed by growing manifolds that has been mentioned above, we need a definition
that extends the notion of local Dt -stationarity that is known from the literature, for
example, Mikhaleva and Piterbarg (1996). Since we are dealing with growing in-
dexing manifolds (as h → 0), we need the local Dt -stationarity to hold uniformly
over the bandwidth h. The following definition makes this uniformity precise.

DEFINITION 5.1 (Local equi-Dt -stationarity). Let Xh(t), t ∈ Sh ⊂ R2 be a
sequence of nonhomogeneous random fields indexed by h ∈ H where H is an
index set. We say Xh(t) has a local equi-Dt -stationary structure, or Xh(t) is locally
equi-Dh

t -stationary, if for any ε > 0 there exists a positive δ(ε) independent of h
such that for any s ∈ Sh one can find a nondegenerate matrix Dh

s such that the
covariance function rh(t1, t2) of Xh(t) satisfies

1 − (1 + ε)
∥∥Dh

s (t1 − t2)
∥∥2 ≤ rh(t1, t2) ≤ 1 − (1 − ε)

∥∥Dh
s (t1 − t2)

∥∥2

provided ∥t1 − s∥ < δ(ε) and ∥t2 − s∥ < δ(ε).
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The following result generalizes Theorem 1 in Piterbarg and Stamatovich
(2001) and Theorem A1 in Bickel and Rosenblatt (1973).

THEOREM 5.1 [Qiao and Polonik (2015)]. Let H1 ⊂ R2 be a compact set
and Hh := {t : ht ∈ H1} for 0 < h ≤ 1. Let Xh(t), t ∈ Hh,0 < h ≤ 1 be a class
of Gaussian centered locally equi-Dh

t -stationary fields with matrix Dh
t continuous

in h ∈ (0,1] and t ∈ Hh. Let M1 ⊂ H1 be a one-dimensional compact mani-
fold with bounded curvature and Mh := {t : ht ∈ M1} for 0 < h ≤ 1. Suppose
limh→0,ht=t∗ Dh

t = D0
t∗ uniformly in t∗ ∈ H1, where all the components of D0

t∗
are continuous and bounded in t∗ ∈ H1. Further assume there exists a positive
constant C such that

inf
0<h≤1,hs∈H1

λ2
({

Dh
s

}T
Dh

s

) ≥ C,(5.12)

where λ2(·) is the second eigenvalue of the matrix. Suppose for any δ > 0, there
exists a positive number η such that the covariance function rh of Xh satisfies

sup
0<h≤1

{∣∣rh(x + y, x)
∣∣ : x + y ∈ Mh, x ∈ Mh,∥y∥ > δ

}
< η < 1.(5.13)

In addition, assume that there exists a δ̃ > 0 such that

sup
0<h≤1

{∣∣rh(x + y, x)
∣∣ : x + y ∈ Mh, x ∈ Mh,∥y∥ > δ̃

} = 0.(5.14)

For any fixed z, define

θ ≡ θ(z) =
√

2 logh−1 + 1
√

2 logh−1

[
z + log

{ 1√
2π

∫

M1

∥∥D0
s M

1
s

∥∥ds

}]
,

where M1
s is the unit vector denoting the tangent direction of M1 at s. Then

lim
h→0

P
{

sup
t∈Mh

∣∣Xh(t)
∣∣ ≤ θ

}
= exp

{−2 exp{−z}}.

REMARK. Let λ1(A) is the first eigenvalue of A. The assumptions of
h → Dh

t being a continuous matrix function in h ∈ (0,1] and t ∈ Hh, and
limh→0,ht=t∗ Dh

t = D0
t∗ uniformly in t∗ ∈ H1, imply the existence of C′ ≤ 0

with sup0<h≤1,hs∈H1
λ1({Dh

s }T Dh
s ) ≤ C′, since the first eigenvalue is a continu-

ous function of the entries of a matrix. Now we have

0 < C ≤ inf
0<h≤1
hs∈H1

λ2
({

Dh
s

}T
Dh

s

) ≤ sup
0<h≤1
hs∈H1

λ1
({

Dh
s

}T
Dh

s

) ≤ C′.(5.15)

Since

λ2
({

Dh
s

}T
Dh

s

)∥t1 − t2∥2 ≤ ∥∥Dh
s (t1 − t2)

∥∥2 ≤ λ1
({

Dh
s

}T
Dh

s

)∥t1 − t2∥2,(5.16)
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local equi-Dt -stationarity of Xh(t) implies that

rh(t1, t2) = 1 − ∥∥Dh
s (t1 − t2)

∥∥2 + o
(∥t1 − t2∥2)

(5.17)

uniformly for t1, t2 ∈ Hh. On the other hand, (5.15) and (5.16) imply

1
C′

∥∥Dh
s (t1 − t2)

∥∥2 ≤ ∥t1 − t2∥2 ≤ 1
C

∥∥Dh
s (t1 − t2)

∥∥2
.

Hence, (5.17) also implies the local equi-Dh
t -stationarity of Xh(t).

PROOF OF THEOREM 3.1. Observe that by using Theorem 3.5 we have

sup
x0∈G

∥∥X̂x0(θ̂x0) − Xx0(θx0) − ϕ̂1n
(
Xx0(θx0)

)
V

(
Xx0(θx0)

)∥∥ = Op

( logn

nh7

)
.

Therefore, by using (H1) we see that (3.5) will follow once we have shown that

P
(

sup
x0∈G

∥∥
√

nh6g
(
Xx0(θx0)

)
ϕ̂1n

(
Xx0(θx0)

)
V

(
Xx0(θx0)

)∥∥ < bh(z)
)

(5.18)
→ e−2e−z

.

By definition of g(x) and ϕ̂1n(x) [see (2.9) and (3.12), resp.] we have
∥∥
√

nh6g
(
Xx0(θx0)

)
ϕ̂1n

(
Xx0(θx0)

)
V

(
Xx0(θx0)

)∥∥ = ∣∣Yn
(
Xx0(θx0)

)∣∣,

where

Yn(x) =
√

nh6
√

f (x)∥A(x)∥R

〈
A(x), d2f̂ (x) − Ed2f̂ (x)

〉
,

and A(x) ∈ R3 is defined in (2.8). In other words, (5.18) can be written as

lim
n→∞P

(
sup
x∈L

∣∣Yn(x)
∣∣ < bh(z)

)
= exp

{−2 exp{−z}}.(5.19)

Note that for any x ∈ H, we have Yn(x) → N (0,1) in distribution as n → ∞.
This immediately follows from the fact that under the present assumptions√

nh6(d2f̂ (x) − Ed2f̂ (x)) → N (0, f (x)R) in distribution.
Now we prove (5.19). In what follows, we denote Hh = {x : hx ∈ H} and Lh =

{x : hx ∈ L} for 0 < h ≤ 1. For 0 < h < 1, we also use the notation

Ah(x) = G̃(hx)T ∇f (hx) ∈ R3 and ah(x) = 1
∥Ah(x)∥R

.(5.20)

[Recall that G̃(x) = ∇G(d2f (x)) with G defined in (2.1).] Note that plugging
in h = 1 into the definition we obtain A(x) = (A1(x),A2(x),A3(x))T used above
already. For ease of notation, we denote a1(x) = a(x). Let W be a two-dimensional
Wiener process and

Uh(x) = ah(x)

∫ (
Ah(x)

)T
d2K(x − s) dW(s).(5.21)
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Following similar arguments in the proof of Theorem 1 in Rosenblatt (1976) (for
more details, see the technical supplement [Qiao and Polonik (2016)]), it suffices
to prove

lim
n→∞P

(
sup
x∈Lh

∣∣Uh(x)
∣∣ < bh(z)

)
= exp

{−2 exp{−z}}.(5.22)

To complete the proof, we now show that Uh(x), x ∈ Lh satisfies the conditions
of Theorem 5.1. For any x, y ∈ Lh let rh(x, y) := Cov(Uh(x),Uh(y)). Then obvi-
ously

rh(x, y) = ah(x)ah(y)Ah(x)T
∫

R2
d2K(x − s)d2K(y − s)T dsAh(y).(5.23)

To show that (5.13) and (5.14) hold for this covariance function, we will calculate
the Taylor expansion of the covariance function rh(x + y, x) as y → 0. For any
vector-valued function g(·) = (g1(·), g2(·), g3(·))T : R2 → R3, denote

∇⊗2g(x) =

⎛

⎜⎜⎝

g
(2,0)
1 (x) g

(1,1)
1 (x) g

(1,1)
1 (x) g

(0,2)
1 (x)

g
(2,0)
2 (x) g

(1,1)
2 (x) g

(1,1)
2 (x) g

(0,2)
2 (x)

g
(2,0)
3 (x) g

(1,1)
3 (x) g

(1,1)
3 (x) g

(0,2)
3 (x)

⎞

⎟⎟⎠

and x⊗2 = (x2
1 , x1x2, x1x2, x

2
2)T . For any x ∈ R2, we have ∥x⊗2∥ = ∥x∥2. A Tay-

lor expansion of rh(x + y, x) (see the technical supplement [Qiao and Polonik
(2016)] for details) gives

rh(x + y, x) = 1 − y3(h, x)yT + o
(∥∥y⊗2∥∥)

,(5.24)

where the little-o term in (5.24) is independent of h and equivalent to o(∥y∥2), and
3(h, x) = 31(h, x) + 32(hx) with

31(h, x) = 1
2
(
ah(x)

)2[∇Ah(x)T R∇Ah(x)

+ 2
(
Ah(x)T R∇Ah(x)

)T (
Ah(x)T R∇Ah(x)

)]

and the matrix 32(hx) implicitly defined through [an explicit expression for
32(h, x) is derived below]

yT 32(hx)y
(5.25)

= −1
2

(
ah(x)

)2
Ah(x)T

∫ [∇⊗2d2K(s)
]
y⊗2[

d2K(s)
]T

dsAh(x).

Notice that 32 only depends on the product hx, while 31(λ, h) depends on both
hx and h itself [because of the presence of ∇An(x)]. Obviously, 31(h, x) is sym-
metric and we will see below that 32(hx) can also be chosen to be symmetric. The
matrix 31(h, x) is positive semi-definite. If we keep hx fixed, say as x∗, and let
h → 0,

lim
hx=x∗,h→0

31(h, x) = 0
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uniformly in x∗ ∈ H. On the other hand, if hx = x∗ is fixed, then 32(xh) =
32(x

∗) stays fixed as well. We will in fact give an explicit expression of 32(hx)
and show that it is strictly positive definite under the given assumptions. Using
these two properties, our expansion (5.24) then implies (5.17) with Dh

s (t1 − t2) =
(3(h, t1 − t2))

1/2, and this implies local equi-Dt -stationarity of Un(x), x ∈ L (see
remark right after Theorem 5.1). It then only remains to verify conditions (5.12),
(5.13) and (5.14) from Theorem 5.1. The latter follows easily, however, because
due to the boundedness of the support of the kernel K , we have rh(x + y, x) = 0
once ∥y∥ > 1.

To show (5.12), we first derive an explicit expression for 32(hx) by using the
properties of K discussed after the assumptions in Section 3.1. We have

∫
∇⊗2d2K(s)y⊗2[

d2K(s)
]T

ds = −
∫

K(1,2)(z)2 dz4(y),(5.26)

where

4(y) :=

⎛

⎜⎝

b1y
2
1 + y2

2 2y1y2 y2
1 + y2

2

2y1y2 y2
1 + y2

2 2y1y2

y2
1 + y2

2 2y1y2 y2
1 + b1y

2
2

⎞

⎟⎠ ,

with

b1 =
∫ [

K(3,0)(z)
]2

dz/

∫ [
K(1,2)(z)

]2
dz.(5.27)

Note that
∫ [K(3,0)(z)]2 dz + ∫ [K(1,2)(z)]2 dz ≥ 2

∫
K(3,0)(z)K(1,2)(z) dz =

2
∫ [K(2,1)(z)]2 dz, where by assumption (K3) equality is impossible. Thus, b1 > 1.

Plugging (5.26) into (5.25) gives

y32(hx)yT = 1
2

(
ah(x)

)2
∫

K(1,2)(z)2 dzAh(x)T 4(y)Ah(x)

= 1
2

(
ah(x)

)2
∫

K(1,2)(z)2 dzyT 5(hx)y,

where 5(·) is explicitly given in (5.30) below. It is straightforward to see that 5 is
positive definite (by using that b1 > 1). Hence,

32(hx) = 1
2

(
ah(x)

)2
∫

K(1,2)(z)2 dz5(hx),

is positive definite. Let λ2(·) denote the second eigenvalue of a matrix, then

inf
0<h≤1,hx∈H

λ2
(
3(h, x)

) = inf
0<h≤1,hx∈H

inf
∥y∥=1

(
yT 31(h, x)y + yT 32(hx)y

)

≥ inf
0<h≤1,hx∈H

(
inf

∥y∥=1
yT 31(h, x)y + inf

∥y∥=1
yT 32(hx)y

)

≥ inf
0<h≤1,hx∈H

λ2
(
32(hx)

)
> 0,
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validating (5.12). It remains to verify that rh(x, y) [defined in (5.23)] satisfies
(5.13). We first derive a lower bound for the following quantity. This bound will
then lead to the desired result.

inf
x∈Lh,x+y∈Lh

λ∈R,0<h≤1,∥y∥>δ

∫ ∣∣Ah(x + y)T d2K(x + y − s) − λ
[
d2K(x − s)

]T
Ah(x)

∣∣2 ds

≥ inf
x∈Lh,x+y∈Lh

λ∈R,0<h≤1,∥y∥>δ

∫

B(x+y,1)\B(x,1)

∣∣Ah(x + y)T d2K(x + y − s)

− λ
[
d2K(x − s)

]T
Ah(x)

∣∣2 ds
(5.28)

= inf
x∈Lh,x+y∈Lh

∥y∥>δ,0<h≤1

∫

B(x+y,1)\B(x,1)

∣∣Ah(x + y)T d2K(x + y − s)
∣∣2 ds

= inf
x∈Lh,x+y∈Lh

∥y∥>δ,0<h≤1

∫

B(0,1)\B(−y,1)

∣∣Ah(x + y)T d2K(s)
∣∣2 ds

≥ inf
z∈L

inf
∥y∥>δ

∫

B(0,1)\B(−y,1)

∣∣A(z)T d2K(s)
∣∣2 ds.

There exist a finite number of balls B1, B2, . . . ,BN such that for any y with
∥y∥ > δ, at least one of the these balls is contained in B(0,1) \ B(−y,1). It
follows that for any z ∈ L,

inf
∥y∥>δ

∫

B(0,1)\B(−y,1)

∣∣A(z)T d2K(s)
∣∣2 ds ≥ min

i∈{1,2,...,N}

∫

Bi

∣∣A(z)T d2K(s)
∣∣2 ds.

Note that under assumptions (K4) and (F7), for any i ∈ {1,2, . . . ,N} there exists a
constant C > 0 such that the Lebesgue measure of {s ∈ Bi : |A(z)T d2K(s)|2 > C}
is positive. Therefore,

inf
∥y∥>δ

∫

B(0,1)\B(−y,1)

∣∣A(z)T d2K(s)
∣∣2 ds > 0.

Since L is a compact set by assumption (F3), it follows that the integral∫
B(0,1)\B(−y,1) |A(z)T d2K(s)|2 ds is bounded away from zero uniformly over

z ∈ L and ∥y∥ > δ, which by (5.28) further implies that

inf
x,x+y∈Lh

λ∈R,0<h<1,∥y∥>δ

∫ ∣∣Ah(x + y)T d2K(x + y − s) − λ
[
d2K(x − s)

]T
Ah(x)

∣∣2 ds

> 0.

Recalling the definition of ah [see (5.20)], we can rewrite this inequality as

inf
x,x+y∈Lh

λ∈R,0<h≤1,∥y∥>δ

ζx,y,h(λ) > 0,(5.29)
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where

ζx,y,h(λ) = λ2

ah(x)2 − 2Ah(x + y)T
∫

d2K(x + y − s)[d2K(x − s)]T dsAh(x)λ

+ 1
ah(x + y)2 .

If we consider ζx,y,h(λ) as a quadratic polynomial in λ, then its discriminant is
given by

σ (x, y,h) := 4
{
Ah(x + y)T

∫
d2K(x + y − s)

[
d2K(x − s)

]T
dsAh(x)

}2

− 4
ah(x)2ah(x + y)2 .

Inequality (5.29) says that the polynomials ζ(λ;x, y,h) are uniformly bounded
away from zero, and thus their discriminants must satisfy

sup
x∈Lh,x+y∈Lh

∥y∥>δ,0<h≤1

σ (x, y,h) < 0,

or equivalently,

sup
x∈Lh,x+y∈Lh

∥y∥>δ,0<h≤1

∣∣rh(x + y, x)
∣∣ < 1,

which is (5.13). Finally, notice that the constant c in (3.4) corresponds to the quan-
tity log{ 1√

2π

∫
M1

∥D0
s M

1
s ∥ds} from Theorem 5.1. Using the above, one can easily

see that c has the form:

c = log
{√

b2

2
1
π

∫

L

∥51/2(s)Ms∥
∥A(s)∥R

ds

}
,

where b2 = 1
2

∫
K(1,2)(z)2 dz, Ms, s ∈ L is the unit tangent vector to L at s, and

5(s) = (ωij )i,j=1,2 a (2 × 2)-matrix with

ω11(s) = b1A1(s)
2 + A2(s)

2 + A3(s)
2 + 2A1(s)A3(s),

ω12(s) = ω21(s) = 2A1(s)A2(s) + 2A2(s)A3(s),(5.30)

ω22(s) = b1A3(s)
2 + A2(s)

2 + A1(s)
2 + 2A1(s)A3(s),

where A(x) = (A1(x),A2(x),A3(x))T with A(x) as above, and b1 as in (5.27).
"
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SUPPLEMENTARY MATERIAL

Supplement to “Theoretical analysis of nonparametric filament estima-
tion” (DOI: 10.1214/15-AOS1405SUPP; .pdf). Due to page constraints on the
main article, this supplement presents the proofs of some technical results in this
paper as well as some miscellaneous results (Appendix B) that are used in the
proofs.
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