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In the context of heteroscedastic time-varying autoregressive (AR)-process we study the estimation of the error/innovation
distributions. Our study reveals that the non-parametric estimation of the AR parameter functions has a negligible asymptotic
effect on the estimation of the empirical distribution of the residuals even though the AR parameter functions are estimated
non-parametrically. The derivation of these results involves the study of both function-indexed sequential residual empirical
processes and weighted sum processes. Exponential inequalities and weak convergence results are derived.
As an application of our results we discuss testing for the constancy of the variance function, which in special cases corresponds
to testing for stationarity.
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1. INTRODUCTION

Consider the following time-varying autoregressive (AR) process that satisfies the system of difference equations

Yt �

pX
kD1

�k

�
t

n

�
Yt�k D �

�
t

n

�
�t ; t D 1; : : : ; n; (1)

where �k are the AR parameter functions, p is the order of the model, � is a function controlling the volatility and
�t � .0; 1/ denote the i.i.d. errors. Following Dahlhaus (1997), time is rescaled to the interval Œ0; 1� in order to
make a large sample analysis feasible. Observe that this, in particular, means that Yt D Yt;n satisfying (1) in fact
forms a triangular array.

The consideration of non-stationary time series models goes back to Priestley (1965) who considered evolu-
tionary spectra, that is, spectra of time series evolving in time. The time-varying AR process has always been an
important special case, either in more methodological and theoretical considerations of non-stationary processes,
or in applications such as signal processing and (financial) econometrics (e.g. Subba Rao, 1970; Grenier, 1983;
Hall et al., 1983; Rajan and Rayner, 1996; Girault et al., 1998; Eom, 1999; Drees and Stǎricǎ, 2002; Orbe et al.,
2005; Fryzlewicz et al., 2006; Chandler and Polonik, 2006).

One of our contributions is the estimation of the (average) distribution function of the innovations �t D �
�
t

n

�
�t .

Suppose that we have observed Y1�p; Y2�p; : : : ; Yn, and let Yt�1 D .Yt�1; : : : ; Yt�p/0; t D 1; : : : ; n: Given an
estimatorb� of � D .�1; : : : ; �p/0 and corresponding residualsb�t D Yt �b� � tn�0 Yt�1, we consider the sequential
empirical distribution function of the residuals given by
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bF n.˛; ´/ D 1

n

b˛ncX
tD1

1 ¹b�t � ´º ; ´ 2 R; ˛ 2 Œ0; 1�:

The corresponding distribution function of the true innovations is Fn.˛; ´/ D 1

n

Pb˛nc
tD1 1¹�t � ´º: We show that

under appropriate conditions (Theorem 2),

sup
˛2Œ0;1�;´2R

ˇ̌̌bF n.˛; ´/ � Fn.˛; ´/ˇ̌̌ D oP �n�1=2� ; (2)

even though non-parametric estimation of the parameter functions �k is involved. This means that by using appro-
priate estimators for the parameter functions, the (average) distribution function of the �t can be estimated just
as well as if the parameters were known. In parametric situations, this phenomenon is not new, and it perhaps
was first observed in Boldin (1982). We refer to Koul (2002), Ch. 7, for more complex situations. Non-parametric
models usually do not allow for such a phenomenon. See, for instance, Akritas and van Keilegom (2001), Koul
(2002), Schick and Wefelmeyer (2002), Cheng (2005), Müller et al. (2007, 2009a, 2009b, 2012) and van Keilegom
et al. (2008). In contrast to this work, our model, even though non-parametric in nature, has the crucial structure
of being linear in the lagged observations, which also means that the Yt have mean zero. For more on the role of
a zero mean in this context, see Wefelmeyer (1994) and Schick and Wefelmeyer (2002). (Generalized) Autore-
gressive Conditional Heteroscedastic-type processes are considered in Horváth et al. (2001), Stute (2001), Koul
(2002), Koul and Ling (2006) and Laïb et al. (2008) (cf. Remark (a) given next to Theorem 4 ).

The proof of the results just mentioned involves the behaviour of two types of stochastic processes, both of which
are investigated in this article. One is the residual sequential empirical process, and the other type is a generalized
partial sum process or weighted sums process. Both are of independent interest. The residual sequential empirical
process is defined as

�n.˛; ´; g/ D
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; (3)

where ˛ 2 Œ0; 1�; ´ 2 R; g W Œ0; 1�! Rp; g 2 Gp D ¹g D .g1; : : : ; gp/0; gi 2 Gº with G an appropriate function
class such thatb��� 2 Gp with probability tending to 1 (see in the succeeding texts) and F.´/ denotes the distribu-
tion function of the errors �t : Observe that �n.˛; ´; 0/ D

p
n.Fn.˛; ´/�EFn.˛; ´//, where, here, 0 D .0; : : : ; 0/0

denotes the p-vector of null functions. The basic form of �n is standard, and residual empirical processes based
on non-parametric models have been considered in the literature as indicated earlier. Our contribution here is to
study these processes based on a non-stationary Yt of the form (1).

The second key type of processes in this article is weighted sums of the form

Zn.h/ D
1
p
n

nX
tD1

h

�
t

n

�
Yt ; h 2 H;

where H is an appropriate function class. Such processes can be considered as generalizations of partial sum
processes. Exponential inequalities and weak convergence results for such processes are derived later. We use
properties of Zn.h/ for proving (2), and this motivates its study here.

We also study the empirical distribution of the estimated errors bF �n.˛; ´/ D 1

n

Pb˛nc
tD1 1.b�t � ´/; whereb�t D b�tb�. tn / for an appropriate estimatorb� � t

n

�
of the variance function �

�
t

n

�
: We will see that under appropriate

conditions,
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sup
˛2Œ0;1�;´2R
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p
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tD1
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�
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where F �n .˛; ´/ D
1

n

Pb˛nc
tD1 1.�t � ´/ denotes the empirical distribution of the true errors and f is their density.

The derivation of this result involves the study of a residual sequential empirical process slightly more general than
(3) in order to accommodate for the estimation of the variance. Notice that, from (4), we can see that in contrast
to the estimation of the AR parameter functions, the estimation of the variance function is not negligible, even if
the variance was to be assumed constant. See Section 3 for more on this.

Dahlhaus (1997) advanced the formal analysis of time-varying processes by introducing the notion of a locally
stationary process. This is a time-varying process with time being rescaled to Œ0; 1� that satisfies certain regularity
assumptions; see (14–16) presented later. We would like to point out, however, that, in our article, local stationarity
is only used to calculate the asymptotic covariance function in Theorem 5. All the other results hold under weaker
assumptions.

The outline of the article is as follows. In Sections 2, 3 and 4, we analyze the large sample behaviour of the
function-indexed residual empirical processes and of function-indexed weighted sums, respectively, under the
time-varying model (1), and apply the obtained results to show (2) and (4). As an application of the theoretical
results, we discuss in Section 5 a method for testing for homoscedasticity, which in special cases is equivalent to
testing for stationarity. Proofs are deferred to Section 6.

Remark on measurability. Suprema of function-indexed processes will enter the theoretical results given in the
succeeding texts. We assume throughout the article that such suprema are measurable.

2. RESIDUAL EMPIRICAL PROCESSES UNDER TIME-VARYING AUTOREGRESSIVE MODELS

In order to formulate one of our main results for the residual empirical process �n.˛; ´; g/ defined in (3) earlier,
we first introduce some more notations and formulate the underlying assumptions.

Let Hdenote a class of functions defined on Œ0; 1� and let ddenote a metric on H. For a given ı>0; letN.ı;H; d /
denote the minimal number N of d -balls of radius � ı that are needed to cover H. Then logN.ı;H; d / is called
the metric entropy of H with respect to d: If the balls Ak are replaced by brackets Bk D ¹h 2 H W g

k
� h � gkº

for pairs of functions g
k
� gk; k D 1; : : : ; N with d.gk; gk/ � ı, then the minimal number N D NB.ı;H; d /

of such brackets with H �
SN
kD1 Bk is called a bracketing covering number, and logNB.ı; H; d / is called the

metric entropy with bracketing of H with respect to d: For a function h W Œ0; 1� ! R, we denote khk1 WD
supu2Œ0;1� jh.u/j and khk2n WD

1

n

Pn

tD1 h
2
�
t

n

�
: We further denote by dn the metric generated by k � kn; that is,

dn.h; g/ D kh � gkn:

Assumptions.

(i) The process Yt D Yt;n has a Moving Average (MA)-type representation

Yt;n D

1X
jD0

at;n.j /�t�j ; (5)

where �t �i:i:d: .0; 1/: The distribution function F of �t has a strictly positive Lipschitz continuous Lebesgue
density f: The function �.u/ in (1) is of bounded variation with 0 < m� < �.u/ < m� <1 for all u.

(ii) The coefficients at;n.�/ in (5) satisfy

sup
1�t�n

jat;n.j /j �
K

`.j /
; j D 0; 1; 2; : : :

where, for j > 1, `.j / D j .log j /1C� for some K; � > 0. For j D 0; 1; we let `.j / D 1:
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(iii) We have

sup
g2Gp

max
1�t�n

ˇ̌̌
g
�
t

n

�0
Yt�1

ˇ̌̌
D OP .1/ as n!1: (6)

(iv) supx2R jxj
1Cˇf .x/ <1 for some ˇ > 0.

Assumptions (i) and (ii) have been used in the literature on locally stationary processes before. It is shown in
Dahlhaus and Polonik (2005) (see also Dahlhaus and Polonik, 2009) by using a proof similar to Künsch (1995)
that Assumption (i) holds for time-varying AR processes (1) if the zeros of the corresponding AR polynomials are
bounded away from the unit disk (uniformly in the rescaled time u) and the parameter functions are of bounded
variation. In case p D 1, the functions at;n.j / are of the form at;n.j / D �

�
t�j

n

	
�
Qj�1
`D0 �

�
t�`
n

�
; where

�.u/ D �.0/ for u < 0 and, similarly, �.u/ D �.0/ for u < 0. Assumption (iii) is also not too surprising as it
is similar to assumptions used in the analysis of parametric residual empirical processes, [e.g. Koul, 2002, Thm
2.2.3, Ass (2.2.28)]. Assumption (iv) is needed to control the tails of f in the case when the variable ´ in the
process �n.˛; ´; g/ is allowed to range over the entire real line.

Recalling the definition of �n.˛; ´; g/ given in (3), we see that the special case g D 0
¯

(the vector of zero
functions) gives a process only based on the innovations, which are independent but not necessarily identically
distributed. Our first theorem says that if the index class G is not too large, then �n.˛; ´; g/ and �.˛; ´; 0/ behave
the same asymptotically:

Theorem 1. Suppose that Assumptions (i) and (ii) hold. Let G denote a function class such that, for some c > 0;

Z 1

c=n

q
logNB

�
u2;G; dn

�
du <1 8 n: (7)

Then we have for any 0 < L <1 and ın ! 0 as n!1 that

sup
˛2Œ0;1�;´2.�L;L/;

g2Gp W
Pp
kD1

kgkkn�ın

j�n.˛; ´; g/ � �n.˛; ´; 0/j D oP .1/: (8)

If, in addition, Assumptions (iii) and (iv) hold, then (8) also holds with L D1.

The proof of Theorem 1 rests on the crucial technical Lemma 1, which is given in Section 6. This lemma implies
asymptotic stochastic equicontinuity of the residual empirical sequential process �n.˛; ´; g/ of which the assertion
of Theorem 1 is an immediate consequence.

Statements of type (8) are of typical nature for work on residual empirical processes [e.g. (8.2.32) in Koul, 2002].
Observe, however, that, here, we are dealing with time-varying AR processes and are considering non-parametric
index classes. Also keep in mind that we are considering triangular arrays (recall that Yt D Yt;n).

The function class G is generic in the formulation of Theorem 1. As indicated in Section 1, what we have in
mind is function classes G modelling the differencesb�k � �k [cf. Assumption (vii)]. A specific example of such a
class is given in the discussion next to the formulation of Theorem 2.

Notice that Theorem 1 is considering the difference of two processes where the ‘right’ centring is used. In con-
trast to that, we now consider the difference between two sequential empirical distribution functions: one of them
based on the residuals and the other on the innovations. As already said earlier, under appropriate assumptions, the
difference of these two functions is oP

�
1=
p
n
�
, so that the non-parametric estimation of the parameter functions

has an negligible asymptotic effect on the estimation of the (average) innovation distribution.
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Further assumptions.

(v) jcumk.�t /j � kŠC k for k D 1; 2; : : : for some C > 0.
(vi) For k D 1; : : : ; p; we have kb�k � �kk2n D OP .m�2n / with mn !1 as n!1:

(vii) There exists a class G withb�k.�/� �k.�/ 2 G; k D 1; : : : ; p; with probability tending to 1 as n!1 such
that supg2G kgk1 <1; and for some C; c > 0; we have

R 1
c=n

logNB.u;G; dn/ du < C <18 n:

Theorem 2. Assume Assumptions (i) and (ii) and that G is such that (7) holds. In addition, assume that Assump-
tions (v)–(vii) hold, withmn satisfying

p
nˇ2n

m2n
D o.1/ as n!1, where ˇn is such that max1�t�n Y 2t D OP .ˇ

2
n/.

Then we have for 0 < L <1 that

sup
˛2Œ0;1�;´2.�L;L/

ˇ̌̌bF n.˛; ´/ � Fn.˛; ´/ˇ̌̌ D oP .1=pn/: (9)

If further Assumptions (iii) and (iv) hold, then (9) also holds with L D1:

Discussion of assumptions: Assumption (v) holds, for instance, when Ej�t jk �
�
C

2

�k
for all k D 1; 2; : : : .

This is obviously a strong assumption. However, much of the literature on locally stationary processes is using
it, in particular those in which rates of convergence for the estimators b� and/or b� are derived. In our work, this
assumptions enter the picture through Theorem 5, which is used in the proof of Theorem 2. It is worth pointing
out in this context that the assumption onmn is tied to the large-sample behaviour of the maximum of the Y 2t ; t D
1; : : : ; T; and the strong assumption (v) entails ‘weak’ conditions on the estimators b�: In fact, under Assumption
(v), we can choose ˇ2n D logn, which follows as in the proof of Lem 5.9 of Dahlhaus and Polonik (2009).
Weakening condition (v) would require a stronger condition on ˇn; the rate of convergence of the estimatorb�n:

The assumptions on the entropy integral [see Assumptions (vii) and (7)] control the complexity of the class
G. Many classes G are known to satisfy these assumptions – see below for an example. For more examples,
we refer to the literature on empirical process theory. A more standard condition on the covering numbers isR 1
c=n

p
logN.u;G; dn/ du < 1 (or similarly with bracketing). Compared with that, the entropy integral in

Assumption (iv) does not have a square root, and the latter is similar to condition (7) where the integrand isp
logNB.u2;G; dn/ (notice the u2). This makes both our entropy conditions stronger than the standard assump-

tion. The reason for this is that the exponential inequality underlying our derivations is not of sub-Gaussian type
(Lemma 3), which in turn is caused by the dependence structure of our underlying time-varying process.

A class of non-parametric estimators satisfying conditions (vi) and (vii) is given by the wavelet estimators
of Dahlhaus et al. (1999). These estimators lie in the Besov smoothness class Bsp;q.C / where the smoothness
parameters satisfy the condition s C 1

2
� 1

max.2;p/ > 1: The constant C > 0 is a uniform bound on the (Besov)
norm of the functions in the class. Dahlhaus et al. derive conditions under which their estimators converge at rate� logn
n

�s=.2sC1/
in the L2-norm. For s � 1; the functions in Bsp;q.C / have uniformly bounded total variation.

Assuming that the model parameter functions also posses this property, the rate of convergence in the dn-distance
is the same as the one in L2, because in this case, the error in approximating the integral by the average over
equidistant points is of order O.n�1/: Consequently, in this case, we have m�1n D

� logn
n

�s=.2sC1/
. In order

to verify the condition on the bracketing covering numbers from Assumption (iii), we use Nickl and Pötscher
(2007). Their Cor. 1, applied with s D 2; p D q D 2; implies that the bracketing entropy with respect to the
L2-norm can be bounded by C ı�1=2. (When applying their Corollary to our situation, choose, in their notation,
ˇ D 0; 	 D U Œ0; 1�; r D 2 and 
 D 2, say).

3. ESTIMATING THE DISTRIBUTION FUNCTION OF THE ERRORS �T

Estimating the error distribution can be treated by using similar techniques as used for the innovation distribution,
although the estimation of the variance is not negligible – see Theorem 4 and Remark (a) right next to the theorem.
For other work involving the estimation of the error distribution and the volatility, see, for instance, Akritas and
van Keilegom (2001) and Neumeyer and van Keilegom (2010).
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The sequential empirical distribution function of theb�t can be rewritten as

bF �n.˛; ´/ D 1

n

b˛ncX
tD1

1¹b�t � ´º D 1

n

b˛ncX
tD1
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´
�t �

.b� � �/ � t
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�
�
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� C ´

 b� � t
n

�
� �

�
t

n

�
�
�
t

n

� !
C ´

μ
:

Accordingly, we define the modified residual sequential empirical process as

��n.˛; ´; g; s/ D
1
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b˛ncX
tD1
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C �
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�
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n

�
C �

�
t

n

��	
=�
�
t

n

�	 i
;

(10)

where we think of s 2 S with the class S being a model for the differenceb��� 2 S. The following is the analogue
to Theorem 1.

Theorem 3. Assume Assumptions (i) and (ii) and that G and S are classes of sets satisfying the entropy
condition (7). Then we have for any 0 < L <1 and ın ! 0 as n!1 that

sup
˛2Œ0;1�;´2.�L;L/

sup
¹.g;s/2Gp�SW

Pp
kD1 kgkknCkskn�ın;º

j��n.˛; ´; g; s/ � �
�
n.˛; ´; 0; 0/j D oP .1/: (11)

If further Assumptions (iii) and (iv) hold, then assertion (11) also holds with L D1 and kskn replaced by ksk1:

Remarks:

(a) The fact that, for L D 1; we have to replace kskn by ksk1 is again reminiscent of assumptions used in the
analysis of parametric error processes [e.g. Koul and Ling, 2006, Ass (4.4)].

(b) The residual sequential empirical process from (3) corresponds to not estimating the variance. Formally, this
corresponds to using the estimate of the variance being constant equal to 1 (i.e. not dividing the residuals
by an estimate of the variance). Since S models the difference b� � �; this results in the class S D ¹1 � �º
consisting of only one function. With this choice, the process (10) reduces to the process (3). In fact, we have
�n.˛; ´; g/ D ��n.˛; ´; g; 1 � �/:

Further assumptions.

(viii) We have kb� � �k2n D oP .n�1=2/ as n!1:
(ix) There exists a function class S withb��� 2 S with probability tending to 1 as n!1, sups2S ksk1 <1;

and for some C; c > 0; we have
R 1
c=n

logNB.u;S; dn/ du < C <1 8 n:

Theorem 4. Assume Assumptions (i), (ii), (v)–(ix) and that G and S are classes of sets satisfying the entropy
condition (7). In addition, assume that f is differentiable with bounded derivative and that the sequence ¹mnº in
Assumption (vi) is satisfying

p
nˇ2n

m2n
D o.1/ as n ! 1, where ˇn is such that max1�t�n Y 2t D OP .ˇ

2
n/. Then

we have for 0 < L <1 that

sup
˛2Œ0;1�;´2.�L;L/

ˇ̌̌̌
ˇbF �n.˛; ´/ � F �n .˛; ´/ � ´f .´/ 1

p
n

dn˛eX
tD1

b� � t
n

�
� �

�
t

n

�
�
�
t

n

� ˇ̌̌̌
ˇ D oP .1=pn/: (12)

If further Assumptions (iii) and (iv) hold and if 1

kb�k1 D OP .1/, then (12) also holds with L D1:
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Remarks.

(a) The theorem shows that, in contrast to the estimation of the AR parameters, the estimation of the vari-
ance function is not negligible, and this even holds in the i.i.d. case when the variance is constant. That
the estimation of the AR parameters �k

�
t

n

�
is negligible is due to the technical fact that, in the Tay-

lor expansion of E
�bF �n � F �n 	 .˛; ´/; the estimates of the AR parameters appear in sums of the form

1

n

Pn

tD1.
b�k��/ � tn� Yt�k . Now, if .b�k��/ � tn� lies in a class of functions G; then this sum can be absolutely

bounded by supg2G
ˇ̌
1

n

Pn

tD1 g
�
t

n

�
Yt�k

ˇ̌
, and because the Yt�k have mean zero and the functions g

�
t

n

�
have

small norm, the latter sum is oP .n�1=2/ under appropriate assumptions. In contrast to that, the sum of the
differences .b� � �/ � t

n

�
does not involve the zero mean Yt ’s, so that the same ‘trick’ does not apply.

(b) The term ´f .´/ 1p
n

Pdn˛e
tD1

b�. tn /��. tn /
�. tn /

in (12) is the first-order stochastic approximation to the differ-

ence of the appropriate centrings F t
n

�
.b� � �/ � t

n

�0
Yt�1 C ´b� � tn�	� F.´/ [see (49) and (51) shown later].

The factor ´f .´/ also appears in other work that involves the estimation of variance functions such as Horváth
et al. (2001) and Koul and Ling (2006).

(c) The wavelet-based estimator of the variance function of Dahlhaus and Neumann (2001) satisfies the necessary
assumptions onb� for 0 < L <1.

(d) In order to be able to utilize the earlier results to develop statistical methodology, finer knowledge about the

asymptotic behaviour of the term 1p
n

Pdn˛e
tD1

b�. tn /��. tn /
�. tn /

is needed. It can be expected that, under appropri-

ate assumptions, this term becomes asymptotically normal for reasonable estimators, but to the best of our
knowledge, such a result is not available in the literature for estimators of the variance function under local
stationarity. While it might be possible to derive such a result for certain estimators under appropriate assump-
tions, exploring this question goes beyond the scope of this work. It is also unclear, whether the asymptotic
normality, if it can be derived, could be easily used for statistical purposes, for what really is needed is the

knowledge about the asymptotic distribution of the sum F �n .˛; ´/C ´f .´/
1p
n

Pdn˛e
tD1

b�. tn /��. tn /
�. tn /

: For this,

a stochastic expansion of the sum 1p
n

Pdn˛e
tD1

b�. tn /��. tn /
�. tn /

would be ideal. Such an expansion will of course

heavily depend on the specific estimator considered. Moreover, one then has to be able to estimate the result-
ing asymptotic variance, which might not be straightforward either, because the asymptotic variance might
have a complex form. We would like to point out, however, that one of the basic ideas underlying our testing
approach discussed in Section 5 is to avoid estimating the variance function altogether and extract information
of the shape of the variance functions by other means.

4. WEIGHTED SUMS UNDER LOCAL STATIONARITY

The second type of processes of importance in our context is weighted partial sums of locally stationary processes
given by

Zn.h/ D
1
p
n

nX
tD1

h

�
t

n

�
Yt ; h 2 H: (13)

In the i.i.d. case, weighted sums have received some attention in the literature. For functional central limit theo-
rems and exponential inequalities, see, for instance, Alexander and Pyke (1986) and van de Geer (2000) and the
references therein.

We will show in the succeeding discussion that, under appropriate assumptions, Zn.h/ converges weakly to a
Gaussian process. In order to calculate the covariance function of the limit, we assume that the process Yt is locally
stationary as in Dahlhaus and Polonik (2009). Recalling Assumption (i), we assume the existence of functions
a.�; j / W .0; 1�! R with
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sup
u

ja.u; j /j �
K

`.j /
; (14)

sup
j

nX
tD1

ˇ̌̌̌
at;n.j / � a

�
t

n
; j

�ˇ̌̌̌
� K; (15)

T V.a.�; j // �
K

`.j /
; (16)

where for a function g W Œ0; 1� ! R; we denote by T V.g/ the total variation of g on Œ0; 1�: Conditions (14)–(16)
hold if the zeros of the corresponding AR polynomials are bounded away from the unit disk (uniformly in the
rescaled time u) and the parameter functions are of bounded variation (see Dahlhaus and Polonik, 2006). Further,
we define the time-varying spectral density as the function

f .u; �/ WD
1

2�
jA.u; �/j2

with

A.u; �/ WD

1X
jD�1

a.u; j / exp.�i�j /;

and

c.u; k/ WD

Z �

��

f .u; �/ exp.i�k/d� D
1X

jD�1

a.u; k C j / a.u; j /

is the time-varying covariance of lag k at rescaled time u 2 Œ0; 1�: We also denote by cumk.X/, the kth-order
cumulant of a random variable X .

Theorem 5. Let H denote a class of uniformly bounded, real-valued functions of bounded variation defined on
Œ0; 1�. Assume further that for some C; c > 0;Z 1

c=n

logN.u;H; dn/ du < C <1 8 n: (17)

Then we have under Assumptions (i), (ii) and (v) that, as n!1, the processZn.h/; h 2 H; converges weakly to
a tight, mean zero Gaussian process ¹G.h/ ; h 2 Hº: If, in addition, (14)–(16) hold, then the variance–covariance
function of G.h/ can be calculated as C.h1; h2/ D

R 1
0
h1.u/ h2.u/ S.u/ du; where S.u/ D

P1
kD�1 c.u; k/:

Remarks.

(a) Here, weak convergence is meant in the sense of Hoffman–Jørgensen – see van der Vaart and Wellner (1996)
for more details.

(b) Weighted partial sums of the form

Zn.˛; h/ D
1
p
n

b˛ncX
tD1

g

�
t

n

�
Yt
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are in fact a special case of processes considered in the theorem. Here, h.u/ D hg;˛.u/ D 1Œ0;˛�.u/ g.u/.
Note that if g 2 G and G satisfies the assumptions on the covering integral from the aforementioned theorem,
then so does the class ¹hg;˛.u/ W g 2 G; ˛ 2 Œ0; 1�º. In this case, the limit covariance can then be written as
C.hg1;˛1 ; hg2;˛2/ D

R ˛1^˛2
0

g1.u/ g2.u/ S.u/ du:

(c) Assumptions (14)–(16) are only used for calculating the covariance function of the limit process.

The main ingredients to the proof of Theorem 5 are presented in the following results. These results are of
independent interest.

Theorem 6. Let ¹Yt ; t D 1; : : : ; nº satisfy Assumptions (i), (ii) and (v), and let H D ¹h W Œ0; 1� ! Rº be
totally bounded with respect to dn: Further, let An D

®
1

n

Pn

tD1 Y
2
t �M

2
¯
, whereM > 0. There exist constants

c0; c1; c2 > 0 such that, for all � > 0 satisfying

� < 16M
p
n  (18)

and

� > c0

 Z �

�

8M
p
n

logN.u;H; dn/ du _ 

!
; (19)

we have

P

"
sup

h2H;khkn��
jZn.h/j > �; An

#
� c1 exp

²
�
�

c2 

³
:

5. APPLICATIONS

We consider an application that motivates the aforementioned study of the two types of processes. The application
consists of testing for the constancy of the variance function, that is, testing for homoscedasticity. We note that,
for our test statistics, this particular application does not require estimation of the variance function �2.u/; rather,
the question is about the constancy of this function. This allows us to use the results of Theorem 2, avoiding the
need to handle the ‘bias’ term arising in Theorem 4 [see Remark (i) following this theorem]. As we are primarily
concerned with questions of homoscedasticity, as well as lacking methodology dealing with distributional tests
regarding the error terms �t in this setting on which to compare, we do not explore questions regarding F � here.
We note that such applications would be more difficult because of this additional term. However, when exploring
questions of homoscedasticity and related questions about stationarity, the current methodology is significantly
easier to implement than the methods to which we compare; see succeeding discussion. Additionally, more general
questions of homoscedasticity are not able to be handled by those methodologies. In the case of a time-varying AR
model, the homoscedastic and heteroscedastic model both live in the alternative space for the tests of stationarity. A
second testing problem, closely related although more involved than the first, is a test for determining the modality
of the variance function, details of which can be found in Chandler and Polonik (2012).

5.1. A test of homoscedasticity

We are interested in testing the null hypothesis H W �.u/ D �0 for all u 2 Œ0; 1�. (Note that if we additionally
assume that the AR parameters do not depend on time, then under mild conditions on the �k , this is also a test for
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weak stationarity.) To this end, consider the process

bGn;� .˛/ D 1

n

b˛ncX
tD1

1
�b�2t �bq 2� � ; ˛ 2 Œ0; 1�; (20)

where bq� is the empirical quantile of the squared residuals. Notice that bGn;� .˛/ counts the number of large
(squared) residuals within the first .100 � ˛/% of the observations Y1; : : : ; Yn, where ‘large’ is determined by the
choice of 
 . If the variance function is constant, then, since one can expect to have a total of bn
c large residuals,
the expected value of bGn;� .˛/ approximately equals ˛
: This motivates the form of our test statistic,

Tn D sup
˛2Œ0;1�

r
n


.1 � 
/

ˇ̌bGn;� .˛/ � ˛
ˇ̌ :
Following the discussion of our application, we argue that the large-sample behaviour of this test statistic under
the null is that of the supremum of a Brownian bridge (Section 5.2).

While there seems to be an obvious robust component to this methodology, it is not obvious that it should be
very powerful, and perhaps, too much information is being lost in considering the data in this way. As we are
unaware of any competing tests for constancy of the variance function in an otherwise non-stationary setting, we
attempt to allay fears about a lack of power by considering the following test of stationarity via our methodology.

We consider the univariate locally stationary model used in Puchstein and Preuß (2016),

Xt;n D

�
1C

t

n

�
Zt ; (21)

where the Zt � N.0; 1/ i.i.d. Thus, we run our test on simply the squared observations.
As compared with our test, most tests for stationarity in the literature (e.g. von Sachs and Neumann, 2000;

Paparoditis, 2009, 2010; Preuß et al., 2013; Puchstein and Preuß, 2016) work in the spectral domain, comparing
an estimate of the time-varying spectrum with the stationary estimate. We compare the power behaviour of our
test based on Tn to three of these test. To this end, we use results presented in Puchstein and Preuß (2016), which
compare the methods of Paparoditis (2010) and Preuß et al. (2013) with their proposed method. This latest method
has the benefit of not requiring a window size to be chosen, while the other two methods were run at two different
window sizes to optimize the procedures. For our proposed time domain method, we use a 
 D 0:8, although this
does not prove to be too critical. For example, with n D 256 and under Model (21), the power was 0.870, 0.885
and 0.861 for 
 D .0:7; 0:8; 0:9/. The proposed model is competitive (Table I) and much simpler both conceptually
and implementation-wise.

According to our theory, the estimation of the parameter functions should not have an effect on the test,
asymptotically. To see how far this also holds for finite samples, we simulated from a tvAR(1) of the form

Xt;n D 0:8 sin

�
2�

t

n

�
Xt�1;n CZt

Table I. Simulation results for model (21)

n Tn Paparoditis (2010) Preuß et al. (2013) Puchstein and Preuß (2016)

64 0.311 0.054 0.322 0.341
128 0.549 0.150 0.686 0.698
256 0.878 0.234 0.958 0.958
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Figure 1. Tn D
q

n
q.1�q/

jj OG �Gjj (horizontal) vs
p
njj OF � F jj (vertical)

and then estimated the parameter function �.u/ D 0:8 sin.2�u/ using local least squares followed by a kernel
smooth. Note that this particular form of the estimator does not satisfy the assumptions underlying our theory, but
the discussion later demonstrates the robustness of the result to these assumptions. We generated 1000 data sets
according to this model with n D 256, and the test statistic regarding the residuals was computed for each. We
then generated a sample from a uniform distribution and computed the Kolmogorov–Smirnov statistic, properly
normalized for n D 1000 as a sample from the limiting null distribution. A QQ plot of the two test statistics is
provided in Figure 1. We then simulated from the model

Xt;n D 0:8 sin

�
2�

t

n

�
Xt�1;n C

�
1C

t

n

�
Zt ;

which has the same volatility function as the modulated white noise process (21). With n D 256, 884 of 1000 time
series from this model resulted in a rejection of the null of constant variance using an ˛ D 0:05. We note that this
is very close to the estimated power (0.878) found for Model (21), as expected. Based on the results comparing
this idea with multiple methods in the better studied question about stationarity, we are led to believe that these
results are promising, despite lacking a second method on which to compare.

5.2. Asymptotic distribution of a test statistic Tn

Notice that bGn;� .˛/ is closely related to the sequential residual empirical process, and as can be seen from the
proof of Theorem 7, weighted empirical processes enter the analysis of bGn;� .˛/ through handling the estimation of
q� . Theorem 7 given in the succeeding texts provides an approximation of the test statistic Tn by independent (but
not necessarily identically distributed) random variables. This result crucially enters the proofs in Chandler and
Polonik (2012), where a similar test statistic is used to test for the modality of the variance function. In particular,
it implies that the large-sample behaviour of the test statistic Tn under the null hypothesis is not influenced by
the, in general, non-parametric estimation of the parameter functions, as long as the rate of convergence of these
estimators is sufficiently fast.

First, we introduce some additional notation. Let fu denote the pdf of �.u/ �t , that is, fu.´/ D 1

�.u/
f
�

´

�.u/

	
,

and

Gn;� .˛/ D
1

n

b˛ncX
tD1

1
�
� 2t �

2

�
t

n

�
� q 2�

�
;

where q� is defined by means of

‰.´/ D

Z 1

0

F

�
´

�.u/

�
du �

Z 1

0

F

�
�´

�.u/

�
du; ´ � 0; (22)
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as the solution to the equation

‰.q� / D 1 � 
: (23)

Notice that this solution is unique since we have assumed F to be strictly monotonic, and if �2.u/ D �2
0

is constant
for all u 2 Œa; b�, then q2� equals the upper 
 -quantile of the squared innovations �2t D �

2
0
�2t : The approximation

result that follows does not assume that the variance is constant, however.

Theorem 7. Let 
 2 Œ0; 1� and suppose that 0 � a < b � 1 are non-random. Then, under Assumptions (i)–(v),
with n1=2 logn

m2n
D o.1/; we have as n!1 that

p
n sup
˛2Œ0;1�

ˇ̌ bGn;� .˛/ �Gn;� .˛/C c.˛/ .Gn;� .1/ � EGn;� .1//
ˇ̌
D op.1/; (24)

where

c.˛/ D

R ˛
0
Œ fu.q� /C fu.�q� / � duR 1

0
Œfu.q� /C fu.�q� /� du

:

Under the null hypothesis �.u/ 	 �0 > 0 for u 2 Œ0; 1�; we have c.˛/ D ˛: Moreover, in case the AR parameter
in Model (1) is constant and

p
n-consistent estimators are used, then the moment assumptions on the innovations

can be significantly relaxed to E � 2t <1:

Under the null hypothesis, �2.u/ D �2
0

for all u 2 Œ0; 1�, the innovations are i.i.d. Using that in
this case c.˛/ D ˛ and EGn;� .˛/ D ˛
; we see that the aforementioned result implies that, in this
case, .
.1 � 
//�1=2

p
n.bGn;� .˛/ � ˛
/ converges weakly to a standard Brownian Bridge (cf. Chandler

and Polonik, 2012).

6. PROOFS

Throughout the proofs, we use the notation Fu.´/ D P.�.u/�t � ´/.

6.1. A crucial maximal inequality

The proofs of Theorems 1 and 3 rest on the following lemma, which is of independent interest. It is modelled
after a similar result for empirical processes (van de Geer, 2000, Thm 5.11). Let H�

L
D Œ0; 1�� .�L;L/�Gp �S

denote the index space of the process ��n defined in (10), where 0 < L � 1. Define a metric on H�
L

as

dn;W .h1; h2/ D j˛1 � ˛2j C jW.´1/ �W.´2/j C

pX
kD1

kg1;k � g2;kkn C ks1 � s2kn; (25)

where W.x/ D
R x
�1

w.y/dy with w.y/ > 0 integrable such that, with ˇ > 0 from Assumption (iv), we have
limjyj!1 y1Cˇw.y/ D 1. Observe that W is a strictly increasing, positive, bounded function on R and the tails
of f are not heavier than the ones of w, assuming that Assumption (iv) holds.

Lemma 1. Assume Assumptions (i) and (ii). Further assume that both G and S are totally bounded
with respect to dn. Let An D

®
1

n

Pn

sD�pC1 Y
2
s � C

2
0

¯
\
°

supg2G jg
�
t

n

�0
Yt�1j < C�0

±
: Define K� D

kf k1
m�

�
sups2S kskn Cm

� C LC
p
p C0

�
: Suppose that C1; �;  > 0 are such that
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� �
26K�
p
n
; (26)

� �
1

2
K�
p
n .2 ^ /; (27)

� � C1

�Z �

�=28K�
p
n

q
logNB

�
u2;H�

L
; dn;W

�
du _ 

�
: (28)

Then for 0 < L <1 and C1 � 26
p
10K�, we have with C2 D

�
26.26C1/K�

C21
C 2

	
that

P

"
sup

h1;h22H�LWdn;W .h1;h2/��2

ˇ̌
��n.h1/ � �

�
n.h2/j � �; An

#
� C2 exp

�
�

�2

26.26 C 1/K� 2

�
:

If, in addition, Assumption (iv) holds and, for some c� > 0; we have infs2S infu2Œ0;1� Œ.s C �/.u/� > c�; then the
assertion also holds for L D1 with a modified K� (see Proof).

Remarks:

(a) The assertion also holds (with a slightly modified K�) on the simplified set An D
®
1

n

Pn

sD�pC1 Y
2
s � C

2
0

¯
if we, in addition, assume that supg2G kgk1 <1:

(b) This lemma of course also applies to HL D Œ0; 1� � .�L;L/ � Gp replacing H�
L

[with the appropriately
modified (simplified) dn;W ]. Since this case formally corresponds to putting S D ¹1 � �º, all the assump-
tions involving S are trivially satisfied. Moreover, in this case, the assumptions supg2G kgk1 < 1 and
supx2R jxj

1Cˇf .x/ <1 for some ˇ > 0 can both be dropped (see also Proof).
(c) The assumption infs2S infu2Œ0;1� Œ.s C �/.u/� > c� for some c� > 0 is fulfilled if sups2S ksk1 is arbitrarily

small (recall that we assumed � to be bounded away from zero). In our application, we think of s modelling
the difference b� � � , so that (uniform) consistency of the estimator b� will ensure that, with high probability,b� � � will lie in S; satisfying the assumption.

Proof
We only present an outline of the proof. Let h D .˛; ´; g; s/ 2 H�

L
. First notice that ��n.h/ D ��n.˛; ´; g; s/ is a

sum of bounded martingale differences. To see this, let �´;g;st D 1
�
�
�
t

n

�
�t � g0

�
t

n

�
Yt�1 C ´ s

�
t

n

�
C ´�

�
t

n

��
and Q�´;g;st D �

´;g;s
t � E

�
�
´;g;s
t jFt�1

�
, where Ft D �.�t ; �t�1; : : :/ denotes the �-algebra generated by

¹�t ; �t�1; : : :º, then

��n.˛; ´; g; s/ D
1
p
n

nX
tD1

Q�
´;g;s
t 1

�
t

n
� ˛

�
:

Obviously, also ��n.˛1; ´1; g1; s1/��
�
n.˛2; ´2; g2; s2/ are sums of martingale differences. The proof of the lemma

is based on the basic chaining device that is well known in empirical process theory, utilizing the following
exponential inequality for sums of bounded martingale differences from Freedman (1975).

Lemma (Freedman 1975). Let Z1; : : : ; Zn denote martingale differences with respect to a filtration ¹Ft ; t D
0; : : : ; n � 1º with jZt j � C for all t D 1; : : : ; n: Let further Sn D 1p

n

Pn

tD1Zt and Vn D Vn.Sn/ D
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1

n

Pn

tD1 E
�
Z2t jFt�1

�
: Then we have for all �; 2 > 0 that

P
�
Sn � �; Vn � 

2
�
� exp

 
�

�2

22 C 2	Cp
n

!
: (29)

In order to be able to apply (29) to our problem, it is crucial to control the quadratic variation Vn. We now
indicate how to do this. Let

�
˛;´;g;s
t D Q�

´;g;s
t 1

�
t

n
� ˛

�
:

We have for h1 D .˛1; ´1; g1; s1/; h2 D .˛2; ´2; g2; s2/ 2 H with dn;W .h1; h2/ � � that

Vn DVn.�n.h1/ � �n.h2//

D
1

n

nX
tD1

E

"�e�˛1;´1;g1;s1t 1
�
t

n
� ˛1

�
�e�˛2;´2;g2;s2t

�2
1
�
t

n
� ˛2

� ˇ̌
Ft�1

#

�
1

n

nX
tD1

ˇ̌
1

�
t

n
� ˛1

�
� 1

�
t

n
� ˛2

� ˇ̌
E
�
Q�
´1;g1;s1
t

ˇ̌
Ft�1

	
C
1

n

nX
tD1

E
hˇ̌
Q�
´1;g1;s1
t � Q�

´2;g2;s2
t

ˇ̌ ˇ̌
Ft�1

i
� j˛1 � ˛2j C

1

n
C
1

n

nX
tD1

E

ˇ̌
�
´1;g1;s1
t � �

´2;g2;s2
t

ˇ̌ ˇ̌
Ft�1

�
:

For the last sum, we obtain by telescoping

1

n

nX
tD1

E
�ˇ̌
�
´1;g1;s1
t � �

´2;g2;s2
t

ˇ̌ˇ̌̌
Ft�1

	
�

1

n

nX
tD1

ˇ̌̌̌
F t
n

�
g1

�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
´1

�
� F t

n

�
g1

�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
´2

�ˇ̌̌̌
(30)

C
1

n

nX
tD1

ˇ̌̌̌
F t
n

�
g1

�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
´2

�
� F t

n

�
g1

�
t

n

�0
Yt�1 C .s2 C �/

�
t

n

�
´2

�ˇ̌̌̌
(31)

C
1

n

nX
tD1

ˇ̌̌̌
F t
n

�
g1

�
t

n

�0
Yt�1 C .s2 C �/

�
t

n

�
´2

�
� F t

n

�
g2

�
t

n

�0
Yt�1 C .s2 C �/

�
t

n

�
´2

�ˇ̌̌̌
(32)

We estimate the three terms on the right separately. To control (30), let V t
n
.y/ D F t

n

�
g1
�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
W �1.y/

�
, where W is introduced in (25) earlier. Then

.30/ D
1

n

nX
tD1

ˇ̌
V t
n
.W.´1// � V t

n
.W.´2//

ˇ̌

D
1

n

nX
tD1

ˇ̌̌̌
ˇ̌f tn

�
g1
�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
W �1.�/

	
w
�
W �1 .�/

�
ˇ̌̌̌
ˇ̌ ˇ̌W.´1/ �W.´2/ˇ̌ ˇ̌.s1 C �/ � tn� ˇ̌

(33)

with � between W.´1/ and W.´2/, and thus, by monotonicity of W; we have W �1.�/ 2 .�L;L/ (since ´1; ´2 2
.�L;L/). In fact, for L < 1; we can choose w.x/ D 1 for x 2 .�L;L/ and w.x/ D 0 else, and the term (33)
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(i.e. (30)) can therefore be bounded by

kf k1 .sups2S kskn Cm
�/

m�
�:

For L D 1; we also need to consider cases in which W �1.�/ is large. We fix L0 large enough so that,
for W �1.�/ > L0, we have on An that

ˇ̌
g1
�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
W �1.�/

ˇ̌
> jW �1.�/=2j and that

supjxj>L0 jxj
1Cˇw.x/ > 1=2. The latter can be achieved by our assumption on w (given right before the formu-

lation of the lemma). To see the former, assume that (a) s1
�
t

n

�
C �

�
t

n

�
> c� and (b) supg2G jg

�
t

n

�0
Yt�1j < C�0 .

Then, if j´j � 2C�0
c�

, then it is easy to see that j� t
n
.´2/j �

j´j

2
; which is the assertion. (a) holds by assumption and

(b) holds on An. Using these properties, we obtain

f t
n

�
g1
�
t

n

�0
Yt�1 C .s1 C �/

�
t

n

�
W �1.�/

	
w
�
W �1.�/

� �
M�ˇ

�
t

n

�
j
�
g1
�
t

n

��0
Yt�1 C .s1 C �/

�
t

n

�
W �1.�/ /

ˇ̌1Cˇ
w
�
W �1.�/

�
�

21Cˇ .m�/ˇˇ̌ �
W �1.�/

�1Cˇ ˇ̌
w.W �1.�//

� 22Cˇ .m�/ˇM:

Thus, for L D1; we have the bound

.30/ � max

�
kf k1
m�

; 22Cˇ .m�/ˇ sup
x2R

ˇ̌
x1Cˇf .x/

ˇ̌� �
sup
s2S
kskn Cm

�

�
�:

Next, we consider (31). By an application of a one-term Taylor expansion, there exists �
�
t

n

�
lying between s1

�
t

n

�
and s2

�
t

n

�
such that, with the shorthand notation � t

n
.´2/ D g1

�
t

n

�0
Yt�1 C

�
�
�
t

n

�
C �

�
t

n

��
´2, we have that

F t
n

�
g1

�
t

n

�0
Yt�1C.s1C�/

�
t

n

�
´2

�
�F t

n

�
g1

�
t

n

�0
Yt�1C.s2C�/

�
t

n

�
´2

�
D f t

n

�
� t
n
.´2/

	
.s1�s2/

�
t

n

�
´2:

Consequently, for L <1,

.31/ D
1

n

nX
tD1

f t
n

�
� t
n
.´2/

	 ˇ̌
.s1 � s2/

�
t

n

�
´2
ˇ̌
�
kf k1

m�
L�:

For L D 1, we argue as follows. Since �
�
t

n

�
lies between s1

�
t

n

�
and s2

�
t

n

�
, we have from our assumption

that �
�
t

n

�
C �

�
t

n

�
> c�: As mentioned earlier in the estimation of (33), it now follows that if j´j � 2C�0

c�
, then

j� t
n
.´2/j �

j´j

2
; and we have for j´j � 2C�0

c�
that

.31/ D
1

n

nX
tD1

f t
n

�
� t
n
.´2/

	 ˇ̌
.s1 � s2/

�
t

n

�
´2
ˇ̌

�
1

n

nX
tD1

1

�
�
t

n

� f �� tn .´2/
�. tn /

� ˇ̌
.s1 � s2/

�
t

n

� ˇ̌ˇ̌� t
n
.´2/

�. tn /

ˇ̌
�
�
t

n

� j´2j

j� t
n
.´2/j

�
m� supx2R jxf .x/j

2m�

1

n

nX
tD1

ˇ̌
.s1 � s2/

�
t

n

� ˇ̌
�
m� supx2R jxf .x/j

2m�
�:

(34)
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Consequently, we have uniformly over ´ 2 R

.31/ �
1

m�
max

�
2C�
0
kf k1

c�
;
m� supx2R jxf .x/j

2

�
�:

As for (32), we have on An (and note that we do not need the event
°

supg2G jg
�
t

n

�0
Yt�1j < C�0

±
to hold here)

.32/ � sup
u;x

fu.x/
1

n

nX
tD1

ˇ̌
.g1 � g2/

�
t

n

�0
Yt�1

ˇ̌
�
kf k1

m�

pX
kD1

kg1k � g2kkn

vuutp

n

nX
tD�p

Y 2t �
p
p C0

kf k1

m�
�:

(35)

Putting everything together, we obtain that, for h1; h2 2 H�
L

with dn;W .h1; h2/ � � and � � 1

n
, we have on

An for 0 < L <1 that

Vn.�n.h1/ � �n.h2// � K
� �; (36)

with

K� D
kf k1

m�

�
sup
s2S
kskn Cm

� C LC
p
p C0

�
�;

as defined in the formulation of the lemma. If L D 1; then the formula just shown shows that (36) holds where
the corresponding K� can immediately be obtained from the aforementioned estimates.

Proofs of statements in Remarks given after the lemma

(a) If we modify An by dropping the event
°

supg2G jg
�
t

n

�0
Yt�1j < C�0

±
and instead assume that

supg2G kgk1 <1, then we can estimate the last average in (34) as follows:

1

n

nX
tD1

ˇ̌
.s1 � s2/

�
t

n

� �
g1
�
t

n

��0
Yt�1

ˇ̌
�

vuut 1

n

nX
tD1

.s1 � s2/2
�
t

n

� 1
n

nX
tD1

�
g1
�
t

n

��0
Yt�1/2

� �

vuut1

n

nX
tD1

�
g1
�
t

n

��0
Yt�1/2

� �

vuutsup
g2G
kgk1 p

1

n

nX
tD�pC1

Y 2t

� C0

 
sup
g2G
kgk1 p

!1=2
�:

This then leads to a slightly modified constant K�, which can easily be determined.
(b) If H�

L
is replaced by HL then, as has been discussed earlier, this formally corresponds to setting S D ¹1� �º,

which is a class consists of just one function, implying that, in the aforementioned proof, s1 � s2 D 0. In other
words, all the assumptions used to bound (31) become obsolete.
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The just shown control of the quadratic variation in conjunction with Freedman’s exponential bound for martin-
gales now enables us to apply the (restricted) chaining argument in a way similar to the proof of Thm 5.11 in van
de Geer (2000). Details are omitted.

6.2. Proofs of Theorems 1 and 3

We only present the proof of Theorem 3. The proof of Theorem 1 is exactly the same. Recall that the metric
dn;W .h1; h2/ on H�

L
is defined in (25), and observe that, for h1 D .˛; ´; g; s/ and h2 D .˛; ´; 0; 0/; we have

dn;W .h1; h2/ D
Pp

kD1 kgk � 0kn C kskn. We thus obtain for � > 0 and 0 < L <1 and C > 0 that

P

0B@ sup
˛2Œ0;1�;´2.�L;L/;g2GpPp
kD1

kgkknCkskn�ın

j�n.˛; ´; g; s/ � �n.˛; ´; 0; 0/j � �

1CA
� P

�
A{n

	
C P

0B@ sup
dn;W .h1;h2/�ın

h1;h22H
�
L

j�n.h1/ � �n.h2/j � �;An

1CA ;
where as in Lemma 1, An D

®
1

n

Pn

sD�pC1 Y
2
s � C

2
0

¯
\
°

supg2G jg
�
t

n

�0
Yt�1j < C�0

±
for some C0; C�0 > 0:

An application of Lemma 1 gives the assertion once we have shown that P
�

A{n
	

can be made arbitrarily small

(for sufficiently large n) and that
R 1
c
n

q
logNB

�
u2;H�

L
; dn;W

�
du <1.

To see this, notice that, by our assumptions, we have both
R 1
c
n

p
logNB.u2;G; dn/ du < 1 andR 1

c
n

q
logNB

�
u2;S; dn

�
du < 1: This implies

R 1
c
n

q
logNB

�
u2;H�

L
; dn;W

�
du < 1, because for hi D

.˛i ; ´i ; gi ; si /; i D 1; 2 with j˛1 � ˛2j < 	

4
; jW.´1/ � W.´2/j <

	

4
; kgk1 � gk2kn <

	

4p
; k D 1; : : : ; p and

kskn <
	

4
, we obviously have dn;W .h1; h2/ < �; and thus, by using standard arguments, it is not difficult to see

that

logNB
�
�;H�L; dn;W

�
� C0 log 4

	
C p logNB

�
	

4p
;G; dn

	
C logNB

�
	

4
;S; dn

�
(37)

for some C0 > 0. It remains to show that P.A{n/ can be made arbitrarily small (for n large) by choosing C0; C
sufficiently large. Because of Assumption (iii), this follows from 1

n

Pn

tD1 E


Y 2t
�
< 1; which in turn follows

easily from

EY 2t D E

24 tX
jD�1

at;n.t � j /�j

352 D E
tX

jD�1

tX
kD�1

at;n.t � j /at;n.t � k/�j �k

D

tX
jD�1

a2t;n.t � j / �

1X
jD0

�
K

`.j /

�2
< C <1;

for some C > 0. Here, we are using Assumption (ii).

6.3. Proof of Theorem 5

First, we formulate and prove a lemma that is needed in the proof of Theorem 5. For random variablesX1; : : : ; Xk ,
we denote by cum.X1; : : : ; Xk/ their joint cumulant, and ifXi D X for all i D 1; : : : ; k, then cum.X1; : : : ; Xk/ D
cum.X; : : : ; X/ D cumk.X/, the kth-order cumulant of X .
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Lemma 2. Let ¹Yt ; t D 1; : : : ; nº satisfy Assumptions (i) and (ii). For j D 1; 2; : : :, let hj be functions defined
on Œa; b� with khj kn <1: Then there exists a constant 1 � K0 <1 such that for all k � 1 such that

ˇ̌
cum.Zn.h1/; : : : ; Zn.hk//

ˇ̌
� Kk�10

ˇ̌
cumk.�1/

ˇ̌ kY
jD1

khj kn:

If, in addition, khj k1 �M <1; j D 1; : : : ; k, then for k � 3;

ˇ̌
cum.Zn.h1/; : : : ; Zn.hk//

ˇ̌
� .K0/

k�2Mk
ˇ̌
cumk.�1/

ˇ̌
n�

k�2
2 :

Proof
We have cum.Zn.h1/; : : : ; Zn.hk// D n�

k
2

Pn

t1;t2;:::;tkD1
h1
�
t1
n

�
: : : hk

�
tk
n

�
cum.Yt1 ; : : : ; Ytk / by utilizing

multilinearity of cumulants. In order to estimate cum.Yt1 ; : : : ; Ytk /; we utilize the special structure of the Yt -
variables. Since the �j are independent and have mean zero, we have that cum.�j1 ; : : : ; �jk / D 0 unless all the
j`; ` D 1; : : : ; k are equal, and by again using multilinearity of the cumulants, we obtain

cum.Yt1 ; : : : ; Ytk / D cumk.�1/
min¹t1;:::;tkºX

jD0

at1;n.t1 � j / : : : atk;n.tk � j /: (38)

Thus,
ˇ̌
cum.Yt1 ; : : : ; Ytk /

ˇ̌
�
ˇ̌
cumk.�1/

ˇ̌ P1
jD0

Qk
iD1

K

`.jti�j j/
; and consequently,

ˇ̌
cum.Zn.h1/; : : : ; Zn.hk//

ˇ̌
� n�

k
2

ˇ̌
cumk.�1/

ˇ̌ 1X
jD�1

kY
iD1

24 nX
tiD0

ˇ̌̌̌
hi

�
ti

n

�ˇ̌̌̌
K

`.jti � j j/

35
D n�

k
2

ˇ̌
cumk.�1/

ˇ̌ 1X
jD�1

2Y
iD1

24 nX
tiD0

ˇ̌̌̌
hi

�
ti

n

�ˇ̌̌̌
K

`.jti � j j/

35
�

kY
iD3

24 nX
tiD0

ˇ̌̌̌
hi

�
ti

n

�ˇ̌̌̌
K

`.jti � j j/

35 :
Utilizing the Cauchy–Schwarz inequality, we have for the last product

kY
iD3

24 nX
tiD0

ˇ̌
hi
�
ti
n

� ˇ̌ 1

`.jti � j j/

35 � kY
iD3

vuut nX
tiD0

hi

�
ti

n

�2 vuut nX
tiD0

�
K

`.jti � j j/

�2

� n
k
2
�1

kY
iD3

khikn

vuut 1X
tD�1

�
K

`.jt j/

�2

� Kk�20 n
k
2
�1

kY
iD3

khikn;

(39)
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where we used the fact that

rP1
tD�1

�
K

`.jtj/

	2
�
P1
tD�1

K

`.jtj/
� K0 for some K0 < 1: Notice that the

bound (39) does not depend on the index j anymore, so that

ˇ̌
cum.Zn.h1/; : : : ; Zn.hk//

ˇ̌
� Kk�20 n�1

kY
iD3

khikn
ˇ̌
cumk.�1/

ˇ̌ 1X
jD�1

2Y
iD1

24 nX
tiD0

ˇ̌
hi
�
ti
n

� ˇ̌ K

`.jti � j j/

35 :
By using

P1
jD�1

K

`.jt1�j j/
K

`.jt2�j j/
D
P1
jD�1

K

`.jt1�j j/
K

`.j.t1�t2/Ct1�j j/
� K

`.jt1�t2j/

P1
jD�1

K

`.jt1�j j/
�

K�

`.jt1�t2j/
for some K� > 0 and Cauchy–Schwarz inequality, we obtain

1X
jD�1

2Y
iD1

24 nX
tiD0

ˇ̌
hi

�
ti

n

� ˇ̌ K

`.jti � j j/

35 D nX
t1D0

nX
t2D0

h1

�
t1

n

�
h2

�
t2

n

� 1X
jD�1

K

`.jt1 � j j/

K

`.jt2 � j j/

�

nX
t1D0

nX
t2D0

h1

�
t1

n

�
h2

�
t2

n

�
K�

`.jt1 � t2j/

� K�

vuut nX
t1D0

h1

�
t1

n

�2 nX
t2D0

1

`.jt1 � t2j/

vuut nX
t1D0

h1

�
t2

n

�2 nX
t2D0

1

`.jt1 � t2j/

� K0 n kh1kn kh2kn:

This completes the proof of the first part of the lemma. The second part follows similar to the aforementioned
by observing that if khik1 < M for all i D 1; : : : ; k, then, instead of the estimate (39), we have with K0 DP1
tD�1

1

`.jtj/
that

kY
iD3

24 nX
tiD0

ˇ̌
hi
�
ti
n

� ˇ̌ 1

`.jti � j j/

35 �Mk�2

kY
iD3

nX
tiD0

1

`.jti � j j/
� .MK0/

k�2:

Now, we continue with the proof of Theorem 5.
Showing weak convergence of Zn.h/ means proving asymptotic tightness and convergence of the finite dimen-

sional distribution (e.g. van der Vaart and Wellner, 1996). Tightness follows from Theorem 6. It remains to show
the convergence of the finite dimensional distributions. To this end, we will utilize the Cramér–Wold device in
conjunction with the method of cumulants. It follows from Lemma 2 that all the cumulants of Zn.h/ of order
k � 3 converge to zero as n ! 1: Using the linearity of the cumulants, the same holds for any linear combina-
tion of Zn.hi /; i D 1; : : : ; K: The mean of all the Zn.h/ equals zero. It remains to show that convergence of the
covariances cov.Zn.h1/; Zn.h2//: The range of the summation indices shown next are such that the indices of the
Y -variables are between 1 and n. For ease of notation, we achieve this by formally setting hi .u/ D 0 for u � 0
and u > 1; i D 1; 2: We have

cov.Zn.h1/; Zn.h2// D
1

n

nX
tD1

nX
sD1

h1

�
t

n

�
� h2

�
s

n

�
cov.Ys; Yt /

D
1

n

nX
tD1

X
jkj�
p
n

h1

�
t

n

�
� h2

�
t � k

n

�
cov.Yt ; Yt�k/ C R1n;

(40)
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where for n sufficiently large,

jR1nj �
1

n

nX
tD1

X
jkj>
p
n

ˇ̌̌̌
h1

�
t

n

�
� h2

�
t � k

n

� ˇ̌̌̌ ˇ̌
cov.Yt ; Yt�k/

ˇ̌
:

From Proposition 5.4 of Dahlhaus and Polonik (2009), we obtain that supt jcov.Yt ; Yt�k/j � K

`.k/
for some

constant K: Since both h1 and h2 are bounded and
P1
kD�1

1

`.k/
< 1; we can conclude that R1n D o.1/: The

main term in (40) can be approximated as

1

n

nX
tD1

X
jkj�
p
n

h1

�
t

n

�
� h2

�
t � k

n

�
c

�
t

n
; k

�
CR2n; (41)

where

jR2;nj �
1

n

nX
tD1

X
jkj�
p
n

ˇ̌̌̌
h1

�
t

n

�
� h2

�
t � k

n

� ˇ̌̌̌ ˇ̌
cov.Yt ; Yt�k/ � c

�
t

n
; k

� ˇ̌
:

Proposition 5.4 of Dahlhaus and Polonik (2009) also gives us that, for jkj �
p
n, we have

Pn

tD0

ˇ̌
cov.Yt ; Yt�k/�

c
�
t

n
; k
� ˇ̌
� K

�
1C jkj

n

	
for some K > 0. Using this, we obtain

jR2;nj �
1

n

nX
tD1

p
nX

kD�
p
n

ˇ̌̌̌
h1

�
t

n

�
� h2

�
t�k
n

� ˇ̌̌̌ ˇ̌̌̌
cov.Yt ; Yt�k/ � c

�
t

n
; k

� ˇ̌̌̌

� K1
1

n

p
nX

kD�
p
n

nX
tD1

ˇ̌̌̌
cov.Yt ; Yt�k/ � c

�
t

n
; k

� ˇ̌̌̌
� K1

1

n

p
nX

kD�
p
n

�
1C

jkj

`.jkj/

�
D o.1/

as n ! 1: Next, we replace h2. t�kn / in the main term of (41) by h2
�
t

n

�
. The approximation error can be

bounded by

1

n

nX
tD1

X
jkj�
p
n

ˇ̌̌̌
h1

�
t

n

�ˇ̌̌̌
�

ˇ̌̌̌
h2

�
t � k

n

�
� h2

�
t

n

� ˇ̌̌̌
K

`.jkj/
D o.1/:

Here, we are using the fact that supu jc.u; k/j �
K

`.jkj/
(see Propn 5.4 in Dahlhaus and Polonik, 2009) together

with the assumed (uniform) continuity of h2, the boundedness of h1 and the boundedness of
P1
kD�1

1

`.jkj/
. We

have seen that

cov.Zn.h1/; Zn.h2/ / D
1

n

nX
tD1

h1

�
t

n

�
� h2

�
t

n

� X
k�
p
n

c

�
t

n
; k

�
C o.1/:

Since S.u/ D
P1
kD�1 c

�
t

n
; k
�
<1; we also have

cov.Zn.h1/; Zn.h2/ / D
1X

kD�1

1

n

nX
tD1

h1

�
t

n

�
� h2

�
t

n

�
c

�
t

n
; k

�
C o.1/:
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Finally, we utilize the fact that T V.c.�; k// � K

`.jkj/
, which is another result from Propn 5.4 of Dahlhaus and

Polonik (2009). This result, together with the assumed bounded variation of both h1 and h2; allows us to replace
the average over t by the integral.

6.4. A crucial exponential inequality

The following exponential inequality is a crucial ingredient to the proof of Theorem 6. It relies on the control of
the cumulants, which is provided in Lemma 2 shown earlier.

Lemma 3. Let ¹Yt ; t D 1; : : : ; nº satisfy Assumptions (i) and (ii). Let h be a function with khkn <1. Assume
that there exists a constant C > 0 such that, for all k D 1; 2; : : : ; we have jcumk.�t /j � kŠ C k : Then there exist
constants c1; c2 > 0 such that, for any � > 0; we have

P Œ jZn.h/j > � � � c1 exp

²
�

�

c2 khkn

³
: (42)

Proof
Using Lemma 2, we have the assumptions on the cumulants implying that

‰Zn.h/.t/ D log Eet Zn.h/ �
1

K0

1X
kD1

.tCK0 khkn/
k;

assuming that t > 0 is such that the infinite sum exists and is finite. We obtain

P ŒjZn.h/j > �� � 2 e
�t� E

�
eZn.h/

�
� 2 exp

´
�t�CK�10

1X
kD1

.tCK0 khkn/
k

μ
:

Choosing t D 1

2CK0khkn
gives the assertion with c1 D 2 e1=K0 and c2 D 2CK0: The fact thatˇ̌

cumj .�t /
ˇ̌
� j Š C j ; j D 1; 2; : : : (43)

holds if Ej�t jk �
�
C

2

�k
; k D 1; 2; : : : ; can be seen by induction. Details are omitted.

6.5. Proof of Theorem 6

Using Lemma 3, we can mimic the proof of Lem 3.2 from van de Geer (2000). As compared with that of van de

Geer, our exponential bound is of the form c1 exp
°
�c2

�

khkn

±
rather than c1 exp

²
�c2

�
�

khkn

	2³
. It is well known

that this type of inequality leads to the covering integral being the integral of the metric entropy rather than the
square root of the metric entropy. (See, for instance, Thm 2.2.4 in van der Vaart and Wellner, 1996.) This indicates
the necessary modifications to the proof in van de Geer. Details are omitted.

6.6. Proofs of Theorems 2 and 4

Proof of Theorem 4
Recall that bF �n.˛; ´ / D 1

n

Pb˛nc
tD1 1

°
�
�
t

n

�
�t � .b� � �/ � tn�0 Yt�1 C .b� � �/ � tn� ´C � � tn� ´ ± and that, by
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assumption, P
��b�n � �; b� � �	 2 Gp � S

	
! 1 as n!1. Let

F �n .˛; ´; g; s/ D
1

n

b˛ncX
tD1

1
²
�

�
t

n

�
�t � g0

�
t

n

�
Yt�1 C .s C �/

�
t

n

�
´

³
: (44)

Then we have with F �n .˛; ´; 0; 0/ D
1

n

Pb˛nc
tD1 1 ¹�t � ´º that F �n .˛; ´/ D F �n .˛; ´; 0; 0/ and bF �n.˛; ´/ D

Fn.˛; ´;b� � �;b� � �/. Further, let

E�n .˛; ´; g; s/ D
1

n

b˛ncX
tD1

F t
n

�
g
�
t

n

��0
Yt�1 C .s C �/

�
t

n

�
´

�
(45)

denote the conditional expectation of F �n .˛; ´; g; s/ given Ft�1, where Ft D �.Yt ; Yt�1; : : :/. The purpose of
introducing E�n is to make F �n �E

�
n a martingale difference (see in the following texts). We now have

bF �n.˛; ´/ � F �n .˛; ´/ D F �n .˛; ´;b� � �;b� � �/ � F �n .˛; ´; 0; 0/
D
h
.F �n �E

�
n /.˛; ´;

b� � �;b� � �/ � .F �n �E�n /.˛; ´; 0; 0/i
C
h
E�n .˛; ´;

b� � �;b� � �/ �E�n .˛; ´; 0; 0/i
DW Tn1.˛; ´;b� � �;b� � �/C Tn2.˛; ´;b� � �;b� � �/:

(46)

Using this decomposition, we will show the assertion by proving the following two properties:

sup
˛2Œ0;1�;´2.�L;L/

ˇ̌p
n Tn1.˛; ´;b� � �;b� � �/ˇ̌ D oP .1/ (47)

sup
˛2Œ0;1�;´2.�L;L/

p
n

"
Tn2.˛; ´;b� � �;b� � �/ � ´f .´/ 1

n

nX
tD1

b� � t
n

�
� �

�
t

n

�
�
�
t

n

� #
D oP .1/: (48)

Verification of (47). Let ��n.˛; ´; g; s/ D
p
n
�
F �n �E

�
n

�
.˛; ´; g; s/ denote the error sequential empirical process.

By taking into account that, by assumption,
Pp

kD1 k
b�k � �kkn D OP .m

�1
n / and kb� � �kn D OP .n

�1=4/; we
have that, for any � > 0; we can find a C > 0 such that, with probability at least 1 � � for large enough n;

sup
˛2Œ0;1�;´2.�L;L/

ˇ̌p
n Tn1.˛; ´;b� � �;b� � �/ˇ̌ � sup

˛2Œ0;1�;´2.�L;L/;

g2Gp;
Pp
kD1

kgkkn�Cm
�1
n

s2S;kskn�C�1n�1=4

j
p
nTn1.˛; ´; g; s/j:

That the right-hand side is oP .1/ is an immediate application of Theorem 3, and (47) is verified.

Verification of (48). We have by a simple one-term expansion that
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p
nTn2.˛; ´;b� � �;b� � �/ D 1

p
n

dn˛eX
tD1

"
F

 
.b� � �/ � t

n

�0
Yt�1 Cb� � tn� ´
�
�
t

n

� !
� F.´/

#

D f .´/
1
p
n

dn˛eX
tD1

"
.b� � �/ � t

n

�0
Yt�1

�
�
t

n

� C
b� � t

n

�
� �

�
t

n

�
�
�
t

n

� ´

#
(49)

C
1
p
n

dn˛eX
tD1

f 0.�t .´//

"
.b� � �/ � t

n

�0
Yt�1

�
�
t

n

� C
b� � t

n

�
� �

�
t

n

�
�
�
t

n

� ´

#2
(50)

with �t .´/ between ´ and
.b���/. tn /0Yt�1

�. tn /
C
b�. tn /
�. tn /

´. The term (50) is a remainder term that will be treated as shown

later. The sum in (49) can be written as a sum of two terms

f .´/
1
p
n

dn˛eX
tD1

.b� � �/ � t
n

�0
Yt�1

�
�
t

n

� C ´f .´/
1
p
n

dn˛eX
tD1

b� � t
n

�
� �

�
t

n

�
�
�
t

n

� : (51)

The first terms are (finite sum of) weighted sums of the Yt ’s, and we will now use Theorem 6 to show that this
term is oP .1/. By recalling that, by assumption, the probability of

°b� � � 2 Gp
±

tends to 1 as n ! 1, we can

assume that .b� � �/k 2 G for all k D 1; : : : ; p. For h 2 H D ¹h˛;g D 1˛.u/ g.u/�.u/
I ˛ 2 Œ0; 1�; g 2 Gº with the

shorthand notation 1˛.u/ D 1 .u � ˛/, let

Zk;n.h/ D
1
p
n

nX
tD1

h

�
t

n

�
Yt�k; k D 1; : : : ; p: (52)

Then we can write the first term in (51) as f .´/
Pp

kD1Zk;n

�
1˛ .

b���/k
�

	
: With this notation, we have (on the

event
°b� � � 2 Gp

±
) that

ˇ̌̌̌
ˇf .´/ 1

p
n

dn˛eX
tD1

.b� � �/ � t
n

�0
Yt�1

�
�
t

n

� ˇ̌̌̌
ˇ � sup

x

f .x/

pX
kD1

sup
h2H
jZk;n.h/j:

It thus remains to show that suph2H jZk;n.h/j D oP .1/ for all k D 1; : : : ; p: To this end, we will apply
Theorem 6. Clearly, suph2H khk

2
n �

1

m�
supg2G kgk

2
n �

1

m�
m�2n D o.1/: Since EZk;n.h/ D 0 for all h 2 H,

an application of Theorem 6 now gives the assertion once we have verified that the class H satisfies the condition
on the covering numbers. This, however, follows easily because by assumption, G has a finite covering integral
with respect to dn; 1

�.u/
is just a single function that is bounded above and below and the class of functions

¹1˛.u/; ˛ 2 Œ0; 1�º is a Vapnik-Chervonenkis (VC)-subgraph class (and thus has a finite covering integral as well).
Now, we show that the term in (50) is oP .1/. We have

.50/ �
2
p
n

nX
tD1

ˇ̌
f 0.�t .´//

ˇ̌ " .b� � �/ � t
n

�0
Yt�1

�
�
t

n

� #2
(53)

C
2
p
n

nX
tD1

ˇ̌
f 0.�t .´//

ˇ̌
´2

"b� � t
n

�
� �

�
t

n

�
�
�
t

n

� #2
; (54)
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and under our assumptions, both (53) and (54) are oP .1/ uniformly over ´. In fact, for (53), we have

2
p
n

nX
tD1

ˇ̌
f 0.�t .´//

ˇ̌ " .b� � �/ � t
n

�0
Yt�1

�
�
t

n

� #2

�
2 supx

ˇ̌
f 0.x/

ˇ̌
m�

1
p
n

nX
tD1

��
.b� � �/� t

n

��0
Yt�1

�2
;

where for the last sum we have (recall that ˇn is such that max1�t�n Y 2t D OP
�
ˇ2n
�
/

1
p
n

nX
tD1

�
.b� � �/� t

n

�0
Yt�1

�2
�

1
p
n

nX
tD1

0@ pX
kD1

.b� � �/2k � tn
� pX
jD0

Y 2t�j

1A
� p max

�p�t�n
Y 2t
p
nOP

�
1

m2n

	
D p

p
n

m2n
ˇ2n OP .1/ D oP .1/;

where the last equality uses our assumptions. The fact that (54) it oP .1/ follows immediately once we have
shown that

sup
´2R

ˇ̌
f 0.�t .´//

ˇ̌
´2 D OP .1/: (55)

To see that (55) holds, first observe that, by assumption, we have limjxj!1 jxf .x/j D 0; and an application of
l‘Hospital’s Rule gives limjxj!1 jx2f 0.x/j D 0: Since f 0 is continuous, we conclude that f 0 is bounded, and
thus, it is clear that (55) holds for j´j < L <1: For L D1, the argument is as follows. The previous arguments
show that supx2R jf

0.x/x2j < 1: Since sup
´2R

max
1�t�n

jf 0.�t .´//´
2j D sup

´2R
max
1�t�n

jf 0.�t .´//�
2
t .´/j j

´2

�2t .´/
j, we

see that it is sufficient to show that

sup
´2R

max
1�t�n

ˇ̌̌̌
´

�t .´/

ˇ̌̌̌
D OP .1/: (56)

This follows by an argument along the lines used to bound (33) in the proof of Lemma 3. Further details are
omitted. Treating residual empirical process, i.e. proving Theorem 2, is very similar. We omit the details.

Proof of Theorem 7
First recall that bF n.˛; ´/ D 1

n

Pb˛nc
tD1 1.b�t � ´/ and Fn.˛; ´/ D 1

n

Pb˛nc
tD1 1

�
�
�
t

n

�
�t � ´

�
: With this notation,

we can write

p
n
� bGn;� .˛/ �Gn;� .˛/ 	

D
p
n
h�
1 � bF n.˛;bq� /C bF n.˛;�bq� /	 � .1 � Fn.˛; q� /C Fn.˛;�q� //i

D
hp

n
�
Fn.˛;bq� / � bF n.˛;bq� / 	 �pn �Fn.˛;�bq� / � bF n.˛;�bq� / 	 i

�

p
n .Fn.˛;bq� / � Fn.˛; q� / / �pn .Fn.˛;�bq� / � Fn.˛;�q� / / �

DW In.˛/ � IIn.˛/

(57)
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with In.˛/ and IIn.˛/; respectively, denoting the two quantities inside the two Œ��-brackets. The assertion of
Theorem 7 follows from

sup
˛2Œ0;1�

jIn.˛/j D oP .1/ and (58)

sup
˛2Œ0;1�

jIIn.˛/ � c.˛/ .Gn;� .1/ � EGn;� .1// j D oP .1/: (59)

Clearly, sup˛2Œ0;1� jIn.˛/j � 2 sup˛2Œ0;1�;´2R jbF n.˛; ´/ � Fn.˛; ´/j; and thus, property (58) follows from
Theorem 2. Property (59) will now be shown by using empirical process theory based on independent, but not
identically distributed, random variables.

Proof of (59)
Define

F n.˛; ´/ WD EFn.˛; ´/ D
1

n

b˛ncX
tD1

F

 
´

�
�
t

n

�! :
We can write

IIn.˛/ D
p
n
�
.Fn � F n/.˛;bq� / � .Fn � F n/.˛; q� / � (60)

C
p
n
�
.Fn � F n/.˛;�bq� / � .Fn � F n/.˛;�q� /� (61)

C
p
n .F n.˛;bq� / � F n.˛; q� // � pn .F n.˛;�bq� / � F n.˛;�q� //: (62)

The process �n.˛; ´; 0/ D
p
n .Fn � F n/.˛; ´/ is a sequential empirical process, or a Kiefer–Müller process,

based on independent, but not necessarily identically distributed, random variables. This process is asymptotically
stochastically equicontinuous, uniformly in ˛ with respect to �n.v; w/ D

ˇ̌
F n.1; v/ � F 1;n.1; w/

ˇ̌
. That is, for

every � > 0; there exists an � > 0 with

lim sup
n!1

P

"
sup

˛2Œ0;1�;
n.´1;´2/�	

j�n.˛; ´1; 0/ � �n.˛; ´2; 0/j > �

#
D 0: (63)

In fact, with �n . ˛1; ´1/; .˛2; ´2/ / D j˛1 � ˛2j C �n.´1; ´2/; we have

sup
˛2Œ0;1�

sup
´1;´2;2R; 
n.´1;´2/�	

j�n.˛; ´1; 0/ � �n.˛; ´2; 0/j

� sup
˛1;˛22Œ0;1�;´1;´22R

n. .˛;´1/; .˛;´2/ /�	

j�n.˛1; ´1; 0/ � �n.˛2; ´2; 0/j:

Thus, (63) follows from asymptotic stochastic dn-equicontinuity of �n.˛; ´; 0/. This in turn follows from a proof
similar to, but simpler than, the proof of Lemma 1. In fact, it can be seen from (35) that, for g1 D g2 D 0; we
simply can use the metric � . .˛1; ´1/; .˛2; ´2/ / D j˛1 � ˛2j C �n.´1; ´2/ in the estimation of the quadratic
variation, which in the simple case of g1 D g2 D 0 amounts to the estimation of the variance, because the
randomness only comes in through the �t . With this modification, the proof of the �n-equicontinuity of �n.˛; ´1; 0/
follows the proof of Lemma 1.

Thus, ifbq� is consistent for q� with respect to �n, then it follows that both (60) and (61) are oP .1/. The proof
of the consistency is omitted here. (It is available from the authors.) This completes the proof.
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